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Valuation-based Systems

Valuation-based Systems

A valuation-based System (VBS) is an abstract framework for representation
of, and reasoning with, knowledge.
It has two parts. A static part that is concerned with representation of
knowledge, and a dynamic part that is concerned with reasoning with
knowledge.
The static part consists of:

Variables: A finite set Φ of variables {X,Y, Z, . . .}. Subsets of Φ will be
denoted by r, s, t, . . ..
Valuations: A finite set Ψ of valuations {ρ, σ, τ, . . .}. Each valuation encodes
knowledge about a subset of variables. Thus, we say, ρ is a valuation for r,
where r ⊆ Φ.

A graphical representation of a VBS is called a valuation network.
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Valuation-based Systems

Valuation-based Systems

The valuation network for the Captain’s problem: A bipartite graph with
variables and valuations as nodes. Each valuation is linked to the variables in
its domain.
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Valuation-based Systems

Valuation-based Systems

The dynamic part consists of several operators:
Combination: ⊕ : Ψ × Ψ → Ψ that enables us to aggregate knowledge.
The combination operator has the following properties:

(Domain) If ρ is a valuation for r, and σ is a valuation for s, then ρ⊕ σ is a
valuation for r ∪ s
(Commutativity) ρ⊕ σ = σ ⊕ ρ
(Associativity) ρ⊕ (σ ⊕ τ) = (ρ⊕ σ)⊕ τ

The sequence in which knowledge is aggregated should make no difference.
The combination of all valuations, ⊕Ψ , is called the joint valuation.
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Valuation-based Systems

Valuation-based Systems

Another operator is marginalization
Marginalization: −X : Ψ → Ψ that allows us to coarsen knowledge
marginalizing X out of the domain of a valuation.
Properties of Marginalization

(Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for
r \ {X}.
(Order does not matter) If ρ is a valuation for r, X,Y ∈ r, then
(ρ−X)−Y = (ρ−Y )−X = ρ−{X,Y }

(Local computation) If ρ and σ are valuations for r and s, respectively, X ∈ r,
and X /∈ s, then (ρ⊕ σ)−X = (ρ−X)⊕ σ

We will sometimes denote ρ−{X} by ρ↓r\{X}
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Valuation-based Systems

Valuation-based Systems

Making inference means finding marginals of the joint valuation for the
variables of interest
Thus, if X is a variable of interest, we compute (⊕Ψ)↓X = (⊕Ψ)−(Φ\{X}) by
marginalizing all variables in Φ \ {X} out of the joint valuation ⊕Ψ .
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Valuation-based Systems

Valuation-based Systems

VBS is an abstraction of several uncertainty calculi
propositional calculus
probability theory
belief function theory
Spohn’s epistemic belief calculus
possibility theory
. . .

VBS can also be considered as an abstraction of
Optimization
Bayesian decision theory
Solving systems of equations
Relational database theory
. . .
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Static: We represent knowledge using either:
basic probability assignment (bpa) µ
belief function β
plausibility function π
commonality function χ

Dynamic: We make inferences using:
Dempster’s rule of combination
Marginalization rule

Inference: Given a set of belief functions (bpa, plausibility, belief, or
commonality) representing knowledge of the domain, and all evidence, we
would like to find the marginals of the joint for some variables of interest.
The joint belief function is obtained by combining all belief functions using
Dempster’s rule of combination.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Suppose Φ denotes a finite set of variables
For each X ∈ Φ, ΩX denotes a finite set of states of X
For every non-empty subset s ⊆ Φ,

Ωs =
∏
X∈s

ΩX

denotes the states of s
Let 2Ωs denote the set of all non-empty subsets of Ωs
A basic probability assignment (bpa) µ for s is a function µ : 2Ωs → [0, 1]
such that: ∑

a∈2Ωs

µ(a) = 1 (1)

Subsets a ∈ 2Ωs such that µ(a) > 0 are called focal elements of µ.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

(Vacuous bpa) Consider µ0 for X such that µ0(ΩX) = 1. This represents
vacuous knowledge of X. This is distinct from the equi-probable (Laplacian)
distribution µL for X such that µL({xi}) = 1

|ΩX | for each xi ∈ ΩX .
Smets’ [2003] Example: Peter, Paul, or Mary?

The Godfather has decided to assassinate Mr. Jones.
He has three assassins on his payroll: Peter, Paul, and Mary
He will flip a fair coin. If heads, he will pick either Peter or Paul to do the job
(we know nothing about how the Godfather will choose between Peter and
Paul). If tails, he will pick Mary.
Mr. Jones is found dead. Who is the killer?
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Suppose K is a variable with states ΩK = {Pe, Pa,Ma}.
Let µK1 denote the bpa for {K} as follows:

µK1({Pe, Pa}) = 0.5,
µK1({Ma}) = 0.5.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

The combination rule in D-S theory of belief functions is Dempster’s rule,
which Dempster called the “product-intersection” rule.
The product of the bpa masses is assigned to the intersection of the focal
elements, any mass assigned to the empty set is discarded, and the remaining
masses re-normalized.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Let µK1 denote the bpa for {K} as follows:

µK1({Pe, Pa}) = 0.5,
µK1({Ma}) = 0.5.

Evidence: Peter has an air-tight alibi. Let µK2 denote the bpa for {K} as
follows:

µK2({Pa,Ma}) = 1

After combining evidence using Dempster’s rule, we have:

(µK1 ⊕ µK2)({Pa}) = 0.5,
(µK1 ⊕ µK2)({Ma}) = 0.5.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

In general µ⊕ µ 6= µ.
Thus, in combining, e.g., µ1 and µ2 by Dempster’s rule, it is important that
µ1 and µ2 are distinct pieces of evidence, and there is no double-counting of
uncertain knowledge.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Dempster’s rule satisfies all properties of combination
(Domain) If µ1 is a bpa for s1 and µ2 is a bpa for s2, then µ1 ⊕ µ2 is a bpa
for s1 ∪ s2
(Commutativity) µ1 ⊕ µ2 = µ2 ⊕ µ1
(Associativity) µ1 ⊕ (µ2 ⊕ µ3) = (µ1 ⊕ µ2)⊕ µ3
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Marginalization in belief function theory is addition.
Projection of states: If x ∈ Ωs, and X ∈ s, then x↓s\{X} (or x−X) is the
state of s \ {X} obtained from x by dropping the state of X.
Projection of subset of states: If a ∈ 2Ωs , then a−X (or a↓s\{X}) is

a−X = {x−X : x ∈ a}

If µ is a bpa for s, and X ∈ s, then µ−X is a bpa for s \ {X} defined as
follows:

µ−X(a) =
∑

b∈2Ωs : b−X=a

µ(b)

for all a ∈ 2s\{X}.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Suppose M and R are variables with ΩM = {t, f} and ΩR = {t, f},
Suppose ρ is a bpa for {M,R} such that

ρ({(t, t), (f, t), (f, f)}) = 0.1,
ρ({(t, f), (f, t), (f, f)}) = 0.7,

ρ(Ω{M,R}) = 0.2.

Then ρ−M is a bpa for {R} such that:

ρ−M ({t, f}) = 1.

And ρ−R is a bpa for {M} such that:

ρ−R({t, f}) = 1.

Thus, ρ by itself tells us nothing about M or R.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

The definition of marginalization of bpa function satisfies the properties of
marginalization:

(Domain) If ρ is a bpa for r, and X ∈ r, then ρ−X is a bpa for r \ {X}.
(Order does not matter) If ρ is a bpa for r, X,Y ∈ r, then
(ρ−X)−Y = (ρ−Y )−X = ρ−{X,Y } = ρ↓r\{X,Y }.
(Local computation) If ρ and σ are bpa’s for r and s, respectively, X ∈ r, and
X /∈ s, then (ρ⊕ σ)−X = (ρ−X)⊕ σ.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Conditional bpa’s

A conditional bpa for Y given X = x, denoted by µY |x is a bpa for Y , i.e.,
µY |x : 2ΩY → [0, 1] such that ∑

a∈2ΩY

µY |x(a) = 1.

The knowledge of Y encoded in µY |x is valid only in the case X = x.
Using Smets’ conditional embedding, we convert the conditional bpa µY |x for
Y to an unconditional bpa µx,Y for (X,Y ) as follows:

µY |x(b) = µx,Y (({x} × b) ∪ ((ΩX \ {x})× ΩY )),

for all focal elements b of µY |x.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

An Example

Suppose X and Y are variables with ΩX = {x, x̄} and ΩY = {y, ȳ}.
Suppose µY |x is as follows:

µY |x({y}) = 0.8,
µY |x(ΩY ) = 0.2.

Then µx,Y is as follows:

µx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,
µx,Y (ΩX,Y ) = 0.2.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Conditional bpa µY |x for Y given x is only well-defined if µX({x}) > 0.
The unconditional bpa µx,Y for (X,Y ) has the following three properties:

1 µ↓Xx,Y is a vacuous bpa for X, i.e., µ↓Xx,Y (ΩX) = 1. µx,Y by itself tells us
nothing about X.

2 µ↓Yx,Y is a vacuous bpa for Y , i.e., µ↓Yx,Y (ΩY ) = 1. µx,Y by itself tells us
nothing about Y .

3 Suppose µx is a bpa for X as follows: µx({x}) = 1. Then,
(µx,Y ⊕ µx)↓Y = µY |x.
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Basics of Dempster-Shafer belief function theory

Basics of D-S Belief Function Theory

Consider µx,Y :

µx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,
µx,Y (ΩX,Y ) = 0.2.

It is clear that µ↓Xx,Y is vacuous for X, and µ↓Yx,Y is vacuous for Y .
Consider µx,Y ⊕ µx:

{(x, y), (x̄, y), (x̄, ȳ)} Ω{X,Y }

µx,Y ⊕ µx 0.8 0.2
{(x, y), (x, ȳ)} {(x, y)} {(x, y), (x, ȳ)}

1 0.8 0.2

Thus, (µx,Y ⊕ µx)({(x, y)}) = 0.8, (µx,Y ⊕ µx)({(x, y), (x, ȳ)}) = 0.2.
Thus, (µx,Y ⊕ µx)↓Y = µY |x.
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Captain’s Problem

Captain’s Problem

Captain’s Problem (R. Almond, Graphical Belief Modeling, Chapman and
Hall, 1995)

A ship’s captain is concerned about how many days his ship may be delayed
before arrival at a destination.
The delay in arrival may be a result of delay in departure and/or delay in
sailing.
Delay in departure may be a result of maintenance (at most 1 day), delay in
loading (at most 1 day) or due to forecast of bad weather (at most I day).
Delay in sailing may be a result of bad weather (at most 1 day) and/or
whether repairs may be needed at sea (at most 1 day).
If maintenance is done before sailing, chances of repairs at sea is less likely.
Weather forecast says small chance of bad weather (.2), good chance of good
weather (0.6). Forecast is 80% reliable.
Captain has some knowledge of loading delay, and whether maintenance is
done before departure.
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Captain’s Problem

Captain’s Problem

Variables
A (arrival delay), ΩA = {0, 1, 2, 3, 4, 5}.
D (departure delay), ΩD = {0, 1, 2, 3}.
S (sailing delay), ΩS = {0, 1, 2}.
L (is loading delayed?), ΩL = {t, f}.
F (weather forecast), ΩF = {b, g}.
W (actual weather), ΩW = {b, g}.
M (is maintenance done before sailing?), ΩM = {t, f}.
R (is repair at sea needed?), ΩR = {t, f}.
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Captain’s Problem

Captain’s Problem
The Captain problem can be described by a causal directed acyclic graph
(DAG) as follows:

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 29 / 56



Captain’s Problem

Captain’s Problem

Valuation Network: A bipartite graph with variables and valuations as nodes.
Each valuation is linked to the variables in its domain.
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Captain’s Problem

Captain’s Problem

Consider the piece of knowledge: Arrival delay is sum of departure delay and
sailing delay
We model this piece of knowledge by a bpa α for {A,D, S} such that

α({(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0),
(1, 0, 1), (2, 1, 1), (3, 2, 1), (4, 3, 1),

(2, 0, 2), (3, 1, 2), (4, 2, 2), (5, 3, 2)}) = 1.

α has one focal set. Such bpa are called deterministic.
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Captain’s Problem

Captain’s Problem

Loading delay, bad weather forecast, and maintenance each adds one day to
departure delay
We model this piece of knowledge by a bpa δ for {D,L, F,M} such that

δ({(0, f, g, f), (1, t, g, f), (1, f, b, f), (1, f, g, t),
(2, f, b, t), (2, t, g, t), (2, t, g, f), (3, t, b, t)}) = 1.

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 32 / 56



Captain’s Problem

Captain’s Problem

At least 90% of the time, bad weather and repair at sea each adds 1 day to
sailing delay
We model this by bpa σ for {S,W,R} such that

σ({(0, g, f), (1, b, f), (1, g, t), (2, b, t)}) = 0.9,
σ(Ω{S,A,R}) = 0.1

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 33 / 56



Captain’s Problem

Captain’s Problem

Forecast is 80% reliable
This piece of knowledge is represented by bpa φ1 for {F,W} such that

φ1({(b, b), (g, g)}) = 0.8,
φ1(Ω{F,W}) = 0.2.

Forecast predicts bad weather with chance 0.2 and good weather with chance
0.6
This piece of knowledge is represented by bpa φ2 for {F} such that

φ2({b}) = 0.2,
φ2({g}) = 0.6,

φ2(Ω{F}) = 0.2.

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 34 / 56



Captain’s Problem

Captain’s Problem

Loading is delayed with chance 0.3, and on schedule with chance 0.5.
This piece is model by bpa λ for {L} such that

λ({t}) = 0.3,
λ({f}) = 0.5,
λ(Ω{L}) = 0.2.

No maintenance was done on the ship prior to departure
This piece of knowledge is represented by bpa µ for {M} such that

µ({f}) = 1.
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Captain’s Problem

Captain’s Problem

If maintenance was done prior to sailing, then chances of repair at sea is
between 10 and 30%. This is represented by conditional bpa ρR|M=t as
follows:

ρR|M=t({t}) = 0.1,
ρR|M=t({f}) = 0.7,

ρR|M=t({t, f}) = 0.2.

After conditional embedding, ρ1 is a bpa for (M,R) as follows:

ρ1({(t, t), (f, t), (f, f)}) = 0.1,
ρ1({(t, f), (f, t), (f, f)}) = 0.7,

ρ1(Ω{M,R}) = 0.2.
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Captain’s Problem

Captain’s Problem

If maintenance was not done prior to sailing, then chances of repair at sea is
between 20 and 80%. This is represented by conditional bpa ρR|M=f as
follows:

ρR|M=f ({t}) = 0.2,
ρR|M=f ({f}) = 0.2,

ρR|M=f ({t, f}) = 0.6.

After conditional embedding, ρ2 is a bpa for (M,R) as follows:

ρ2({(f, t), (t, t), (t, f)}) = 0.2,
ρ2({(f, f), (t, t), (t, f)}) = 0.2,

ρ2(Ω{M,R}) = 0.6.
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Local Computation

Local Computation

Making inference means finding marginals of the joint valuation ⊕Ψ for the
variables of interest.
If there are many variables in Φ, computing the joint valuation ⊕Ψ for Φ is
intractable.
However, one can compute the marginal of the joint for X, (⊕Ψ)↓X , without
computing the joint explicitly, using so-called local computation.
The axiom that allows local computation is the local computation axiom:
If ρ and σ are bpa’s for r and s, respectively, X ∈ r, and X /∈ s, then
(ρ⊕ σ)−X = (ρ−X)⊕ σ.
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Local Computation

Local Computation

Consider the Captain’s problem. We would like to compute the marginal of
the joint for A. So we have to marginalize all other variables from the joint.

Consider L. It is in the domain of δ and λ only. The local computation
axiom guarantees that if we replace δ and λ by (δ ⊕ λ)−L, then the product
of all valuations will give us (⊕Ψ)−L.

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 40 / 56



Local Computation

Local Computation

The reduced VN is as follows:

Similarly, we can recursively remove all but A from the VN.
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Local Computation

Local Computation

After deletion of {L,W,R,M,F, S,D} in this order:
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Local Computation

Local Computation

In finding the marginal for A, we used deletion sequence LW RM F SD.
The order does not matter axiom allows us to use any deletion sequence (and
obtain the same marginal).
Some deletion sequences involve less computation than others.
Finding an optimal deletion sequence is a hard problem.
So we use heuristics to select a sequence such as one-step-look-ahead: The
variable to be marginalized next is the one that leads to combination on the
smallest domain.
A local computation algorithm for finding marginals is implemented in Belief
Function Machine.
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Local Computation

Local Computation

Consider deletion of L. We can describe the computation as messages
between nodes as follows:
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Local Computation

Local Computation
Computing a marginal can be described as propagation of messages in a join
tree:
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Belief Function Machine

Belief Function Machine

A software to build a belief function model and compute marginals using
local computation
Implemented in Matlab
Features:

Belief function model is input as a text file using a language called UIL
(unified input language)
Can solve “large” models
Solve means finding marginal of the joint for variables of interest
Can reduce the marginal belief function to probabilities
Can do sensitivity analysis

Can be downloaded for free from
http://pshenoy.faculty.ku.edu/Papers/BFM072503.zip
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Belief Function Machine Captain’s Problem

Belief Function Machine

Suppose we wish to solve the Captain’s Problem
Input the problem as a UIL file “captain.txt”

Define variables and their state spaces
Define valuations and their domains
Describe the details of each valuations as bpa’s or as conditional bpa’s
Conditional bpa’s are converted to regular bpa’s using Smets’ conditional
embedding

P. P. Shenoy (KU) Graphical Models for Belief Functions August 30, 2019 48 / 56



Belief Function Machine Captain’s Problem

Belief Function Machine

Demo solution of Captain’s problem using BFM in Matlab.
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Belief Function Machine Chest Clinic

Belief Function Machine

BFM can solve ’complete’ models using belief functions
Consider Chest Clinic example from [Lauritzen-Spiegelhalter 1988]
BFM gives exactly the same answers as a Bayes net software would.
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Belief Function Machine Chest Clinic

Belief Function Machine

Demo solution of Chest Clinic using BFM in Matlab.
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Belief Function Machine Communication Network

Belief Function Machine

Communication network [Haenni-Lehmann 2002]
We have a grid of 44 = 8 + 9 + 10 + 9 + 8 communication nodes arranged in
5 rows
There are 68 links, and each link has 90% reliability
Nodes A and B are connected to the grid with links having 80% reliability
What is the reliability of the connection between A and B? (Ans: 63.71%)
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Belief Function Machine Communication Network

Belief Function Machine

Demo solution of Communication network using BFM in Matlab.
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