An Interval-Valued Axiomatic Utility Theory for Dempster-Shafer Belief Functions

Thierry Denœux ${ }^{1}$ \& Prakash P. Shenoy ${ }^{2}$

${ }^{1}$ Université de Technologie de Compiègne
${ }^{2}$ University of Kansas School of Business

September 13, 2019

utc

Recherche
S SORBONNE UNIVERSTTES

Outline

(1) Introduction
(2) vN-M's Utility Theory
(3) A New Utility Theory for D-S Belief Functions
(4) Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

Outline

(1) Introduction

(2) $\mathrm{vN}-\mathrm{M}$'s Utility Theory

3 A New Utility Theory for D-S Belief Functions
(4) Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

Introduction

- Main goal is to propose an axiomatic utility theory for D-S belief function lotteries similar to vN-M's axiomatic framework for probabilistic lotteries.
- D-S theory consists of representations (basic probability assignments, belief, plausibility, commonality, credal sets) + Dempster's combination rule + marginalization rule.
- Representations are also used in other theories, e.g., in the imprecise probability community, credal sets are used with Fagin-Halpern combination rule.
- Our axiomatic utility theory is designed for the D-S theory.
- Therefore, Dempster's combination must be an integral part of our theory.

Outline

Introduction
(2) vN-M's Utility Theory
(3) A New Utility Theory for D-S Belief Functions

4 Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

vN-M's Utility Theory

- Let $\mathbf{O}=\left(O_{1}, \ldots, O_{r}\right)$ denote a finite set of outcomes.
- Let $\mathbf{p}=\left(p_{1}, \ldots, p_{r}\right)$ denote a probability mass function (PMF) on \mathbf{O}, i.e., $p_{i} \geq 0$ for $i=1, \ldots, r$, and $\sum_{i=1}^{r} p_{i}=1$.
- We call $L=[\mathbf{O}, \mathbf{p}]$ a probabilistic lottery on \mathbf{O}. We assume that L will result in one outcome O_{i} (with prob. p_{i}), and it is not repeated.
- We are concerned with a decision maker (DM) who has preferences on \mathcal{L}, the set of all lotteries on \mathbf{O}.
- We write $L \succ L^{\prime}$ if the DM prefers L to $L^{\prime}, L \sim L^{\prime}$ if the DM is indifferent between L and L^{\prime}, and $L \succsim L^{\prime}$ is the DM either prefers L to L^{\prime} or is indifferent between the two.
- Our task is to find a real-valued utility function $u: \mathcal{L} \rightarrow \mathbb{R}$ such that if $L \succ L^{\prime}$, then $u(L)>u\left(L^{\prime}\right)$, and if $L \sim L^{\prime}$, then $u(L)=u\left(L^{\prime}\right)$.

vN-M's Utility Theory

- Of course, this is not always possible (e.g., Condorcet paradox). But, if the DM's preferences satisfy some assumptions, then we can construct such a utility function.
- A utility function is said to be linear if $u([\mathbf{O}, \mathbf{p}])=\sum_{i=1}^{r} p_{i} u\left(O_{i}\right)$, where O_{i} can be considered as a degenerate lottery where $p_{i}=1$.
- von Neumann-Morgenstern's (vN-M's) utility theory was first published in 1947 in an appendix of the $2^{\text {nd }}$ edition of Theory of Games \& Economic Behavior.
- There are several axiomatizations of $\mathrm{vN}-\mathrm{M}$'s utility theory by Herstein-Milnor [1953], Hausner [1954], Luce-Raiffa [1957], Jensen [1967], Fishburn [1982], etc. We will describe the one by Luce-Raiffa [1957].

vN-M's Utility Theory

- Assumption $1 p$ (ordering of outcomes). For any two outcomes O_{i} and O_{j}, either $O_{i} \succsim O_{j}$ or $O_{j} \succsim O_{i}$. Also, if $O_{i} \succsim O_{j}$ and $O_{j} \succsim O_{k}$, then $O_{i} \succsim O_{k}$. Thus, ordering \succsim over \mathbf{O} is complete and transitive.
- Given Assumption $1 p$, we can label the outcomes so that $O_{1} \succsim O_{2} \succsim \ldots \succsim O_{r}$.
- To avoid trivialities, we assume $O_{1} \succ O_{r}$.

vN-M's Utility Theory

- Assumption $2 p$ (reduction of compound lotteries). Any compound lottery $[\mathbf{L}, \mathbf{q}]$ (where $\mathbf{L}=\left(L^{(1)}, \ldots, L^{(s)}\right)$, and $L^{(i)}=\left[\mathbf{O}, \mathbf{p}^{(i)}\right]$) is indifferent to a simple (non-compound) lottery $[\mathbf{O}, \mathbf{p}]$, where

$$
\begin{equation*}
p_{i}=q_{1} p_{i}^{(1)}+\ldots+q_{s} p_{i}^{(s)} \tag{1}
\end{equation*}
$$

- PMF $\mathbf{p}^{(i)}$ is a conditional PMF for \mathbf{O} given that lottery $L^{(i)}$ is realized in the first stage.
- The PMF $\mathbf{p}=(P(\mathbf{L}) \otimes P(\mathbf{O} \mid \mathbf{L}))^{\downarrow \mathbf{0}}$ is the marginal of the joint PMF for 0.

vN-M's Utility Theory

- A lottery $\left[\left(O_{1}, O_{r}\right),(u, 1-u)\right]$ with only two outcomes O_{1} and O_{r}, with PMF $(u, 1-u)$ is called a reference lottery. Let \mathbf{O}_{2} denote $\left(O_{1}, O_{r}\right)$.
- Assumption $3 p$ (continuity) Each outcome O_{i} is indifferent to a reference lottery $\left[\mathbf{O}_{2},\left(u_{i}, 1-u_{i}\right)\right]$ for some $0 \leq u_{i} \leq 1$, i.e., $O_{i} \sim \widetilde{O}_{i}$, where $\widetilde{O}_{i}=\left[\mathbf{O}_{2},\left(u_{i}, 1-u_{i}\right)\right]$.
- Notice that $u_{1}=1, u_{r}=0$, and $0 \leq u_{i} \leq 1$ for $i=2, \ldots, r-1$. u_{2}, \ldots, u_{r-1} need to be assessed by the DM, and the assessments describe the risk attitude of the DM.

vN-M's Utility Theory

- As $O_{2} \succsim O_{3}$, we assume that $u_{2} \geq u_{3}$, etc. Formally, we assume:
- Assumption $4 p$ (completeness and transitivity) The preference relation \succsim for lotteries in \mathcal{L} is complete and transitive.
- Assumption $4 p$ generalizes Assumption $1 p$ for outcomes, which can be regarded as degenerate lotteries.
- Assumption $5 p$ (substitutability) In any lottery $L=[\mathbf{O}, \mathbf{p}]$, if we substitute an outcome O_{i} by the reference lottery
$\widetilde{O}_{i}=\left[\mathbf{O}_{2},\left(u_{i}, 1-u_{i}\right)\right]$ that is indifferent to O_{i}, then the result is a compound lottery that is indifferent to L.

vN-M's Utility Theory

- From Assumptions $1 p-5 p$, given any lottery $L=[\mathbf{O}, \mathbf{p}]$, it is possible to find a reference lottery that is indifferent to L :
(c) First we replace each O_{i} in L by $\widetilde{O}_{i}, i=1, \ldots, r$.
(2) Assumption $3 p$ (continuity) states these indifferent lotteries exist. Assumption $5 p$ (substitutability) says they are substitutable (without changing the preference relation. By using Assumption $4 p$ serially $[\mathbf{O}, \mathbf{p}] \sim[\widetilde{\mathbf{O}}, \mathbf{p}]$.
(3) By applying Assumption $2 p$ (reduction of compound lottery), $[\widetilde{\mathbf{O}}, \mathbf{p}] \sim\left[\mathbf{O}_{2},(u, 1-u)\right]$ where $u=\sum_{i=1}^{r} p_{i} u_{i}$.

vN-M's Utility Theory

- Assumption $6 p$ (monotonicity) Suppose $L=\left[\mathbf{O}_{2},(p, 1-p)\right]$ and $L^{\prime}=\left[\mathbf{O}_{2},\left(p^{\prime}, 1-p^{\prime}\right)\right]$. Then $L \succsim L^{\prime}$ if and only if $p \geq p^{\prime}$.
- Assumption $6 p$ allows us to define $u(L)$ as the utility of O_{1} in an indifferent reference lottery. And as argued in the previous slide, we can always find a reference lottery that is indifferent to L.

vN-M's Utility Theory

Theorem ($\mathrm{vN}-\mathrm{M}$ representation theorem)

If the preference relation \succsim on \mathcal{L} satisfies Assumptions $1 p-6 p$, then there are numbers u_{i} associated with outcomes O_{i} for $i=1, \ldots, r$, such that for any two lotteries $L=[\mathbf{O}, \mathbf{p}]$, and $L^{\prime}=\left[\mathbf{O}, \mathbf{p}^{\prime}\right], L \succsim L^{\prime}$ if and only if

$$
\sum_{i=1}^{r} p_{i} u_{i} \geq \sum_{i=1}^{r} p_{i}^{\prime} u_{i}
$$

Thus, for $L=[\mathbf{O}, \mathbf{p}]$, we can define $u(L)=\sum_{i=1}^{r} p_{i} u_{i}$, where $u_{i}=u\left(O_{i}\right)$. Also, such a linear utility function is unique up to a positive affine transformation, i.e., if $u_{i}^{\prime}=a u_{i}+b$, where $a>0$ and b are real constants, then $u(L)=\sum_{i=1}^{r} p_{i} u_{i}^{\prime}$ is also qualifies as a utility function.

vN-M's Utility Theory

Example 1 (Ellsberg's urn)

- Suppose we have an urn with 90 balls, of which 30 are red, and the remaining 60 are either black or
- We draw a ball at random from the urn. Let X denote the color of the ball drawn. $\Omega_{X}=\{r, b, y\}$. The uncertainty of X can be described by PMF P for X such that $P(r)=1 / 3$, and $P(b)+P(y)=2 / 3$.
- You are offered a choice between $L_{1}: \$ 100$ on red, and $L_{2}: \$ 100$ on black. Which one would you choose?
- L_{1} can be represented by PMF P_{1} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $P_{1}(\$ 100)=1 / 3$, and $P_{1}(\{\$ 0\})=2 / 3$. Thus,
$u\left(L_{1}\right)=(1 / 3) u(\$ 100)+(2 / 3) u(\$ 0)$.
- L_{2} can be represented by PMF P_{2} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $P_{2}(\$ 100)=P(b)$, and $P_{2}(\$ 0)=1 / 3+P(y)$. Thus, $u\left(L_{2}\right)=P(b) u(\$ 100)+(1 / 3+P(y)) u(\$ 0)$.
- Most respondents preferred L_{1} to L_{2}. This implies that $P(b)<1 / 3$.

A New Utility Theory for D-S Belief Functions

Example 1 (Ellsberg's urn, continued)

- Next, You are offered a choice between $L_{3}: \$ 100$ on red or yellow, and $L_{4}: \$ 100$ on black or yellow. Which one would you choose?
- L_{3} can be represented by PMF P_{3} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $P_{3}(\{\$ 100\})=1 / 3+P(y)$, and $P_{3}(\$ 0)=P(b)$. Thus, $u\left(L_{3}\right)=(1 / 3+P(y)) u(\$ 100)+P(b) u(\$ 0)$.
- L_{4} can be represented by PMF P_{4} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $P_{4}(\$ 100)=2 / 3$, and $P_{4}(\$ 0)=1 / 3$. Thus, $u\left(L_{4}\right)=(2 / 3) u(\$ 100)+(1 / 3) u(\$ 0)$.
- Most respondents preferred L_{4} to L_{3}. Also, the respondents who preferred L_{1} to L_{2} preferred L_{4} to L_{3}. This implies that $P(b)>1 / 3$, a contradiction!
- vN-M utility theory is unable to represent most respondents preferences for such lotteries.

A New Utility Theory for D-S Belief Functions

- Ellsberg [1961] spawned a large literature on theories to explain the ambiguity aversion phenomenon
- Using probability theory (unprincipled):
- Becker and Brownson [1964], J. of Political Economy
- Einhorn and Hogarth [1986], J. of Business
- Using credal set semantics of belief functions:
- Gilboa and Schmeidler [1989], J. Math. Economics
- Jaffray [1989], OR Letters
- Gajdos et al. [2008], J. Econ. Theory

Outline

Introduction
(2) $v N-M$'s Utility Theory
(3) A New Utility Theory for D-S Belief Functions

4 Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

A New Utility Theory for D-S Belief Functions

- A belief function (bf) lottery is a tuple $[\mathbf{O}, m]$, where m is a basic probability assignment (BPA) for \mathbf{O}, i.e., $m: 2^{\mathbf{0}} \rightarrow[0,1]$ such that $\sum_{\mathbf{a} \in 2^{\circ}} m(\mathrm{a})=1$. Here, $2^{\mathbf{0}}$ is the set of non-empty subsets of \mathbf{O}.
- We assume that the outcome of a bf lottery is a single outcome, and the lottery will not be repeated.
- m is a BPA that reflects the DM's beliefs about which outcome will occur in a realization of the lottery.
- Let $\mathcal{L}_{b f}$ denote the set of all bf lotteries on \mathbf{O}.
- We have a DM who has preferences on $\mathcal{L}_{b f}$, and our task is the find a utility function $u: \mathcal{L}_{b f} \rightarrow[\mathbb{R}]$ (real-valued interval) that represents DM's partial preferences on $\mathcal{L}_{b f}$.

A New Utility Theory for D-S Belief Functions

Example 1 (Ellsberg's urn)

- Suppose we have an urn with 90 balls, of which 30 are red, and the remaining 60 are either black or yellow.
- We draw a ball at random from the urn. Let X denote the color of the ball drawn. $\Omega_{X}=\{r, b, y\}$. The uncertainty of X can be described by BPA m for X such that $m(\{r\})=1 / 3$, and $m(\{b, y\})=2 / 3$.
- You are offered a choice between $L_{1}: \$ 100$ on red, and $L_{2}: \$ 100$ on black. Which one would you choose?
- L_{1} can be represented by BPA m_{1} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $m_{1}(\{\$ 100\})=1 / 3$, and $m_{1}(\{\$ 0\})=2 / 3$.
- L_{2} can be represented by BPA m_{2} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $m_{2}(\{\$ 0\})=1 / 3$, and $m_{2}(\{\$ 100, \$ 0\})=2 / 3$.
- L_{1} and L_{2} are bf lotteries.

A New Utility Theory for D-S Belief Functions

Example 1 (Ellsberg's urn, continued)

- Next, You are offered a choice between $L_{3}: \$ 100$ on red or yellow, and $L_{4}: \$ 100$ on black or yellow. Which one would you choose?
- L_{3} can be represented by BPA m_{3} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $m_{3}(\{\$ 100\})=1 / 3$, and $m_{3}(\{\$ 100, \$ 0\})=2 / 3$.
- L_{4} can be represented by BPA m_{1} for $\mathbf{O}=\{\$ 100, \$ 0\}$ such that $m_{4}(\{\$ 0\})=1 / 3$, and $m_{4}(\{\$ 100\})=2 / 3$.
- L_{3} and L_{4} are bf lotteries.

A New Utility Theory for D-S Belief Functions

- Assumption $1 b$ (completeness and transitivity) The preference relation \succsim for \mathbf{O} is complete and transitive.
- As in the probabilistic case, we assume that the outcomes are labelled such that

$$
O_{1} \succsim \ldots \succsim O_{r}, \quad \text { and } \quad O_{1} \succ O_{r}
$$

A New Utility Theory for D-S Belief Functions

- Assumption $2 b$ (reduction of compound lotteries) Suppose $[\mathbf{L}, m]$ is a compound lottery, where $\mathbf{L}=\left(L_{1}, \ldots, L_{s}\right), m$ is a BPA for \mathbf{L}, $L_{j}=\left[\mathbf{O}, m_{j}\right]$ is a bf lottery on \mathbf{O}, and m_{j} is a conditional BPA for \mathbf{O} given L_{j}, for $j=1, \ldots, s$. Then, $[\mathbf{L}, m] \sim\left[\mathbf{O}, m^{\prime}\right]$, where $m^{\prime}=\left(m \oplus\left(\bigoplus_{j=1}^{s} m_{L_{j}, j}\right)\right)^{\downarrow \mathbf{O}}$, and $m_{L_{j}, j}$ is a BPA for (\mathbf{L}, \mathbf{O}) obtained from BPA m_{j} for \mathbf{O} by conditional embedding, for $j=1, \ldots, s$.

A New Utility Theory for D-S Belief Functions

- We define a reference bf lottery $\left[\mathbf{O}_{2}, m\right]$, where m is a BPA for $\mathbf{O}_{2}=\left\{O_{1}, O_{r}\right\}$.
- Assumption $3 b$ (continuity) Suppose $[\mathbf{O}, m]$ is a bf lottery derived from some BPA m^{\prime}. Each focal element a of m (considered as a deterministic bf lottery) is indifferent to a bf reference lottery $\left[\mathbf{O}_{2}, m_{\mathrm{a}}\right]$ such that $m_{\mathrm{a}}\left(\left\{O_{1}\right\}\right)=u_{\mathrm{a}}, m_{\mathrm{a}}\left(\left\{O_{r}\right\}\right)=v_{\mathrm{a}}$, and $m_{\mathrm{a}}\left(\left\{O_{1}, O_{r}\right\}\right)=w_{\mathrm{a}}$, for some $u_{\mathrm{a}}, v_{\mathrm{a}}, w_{\mathrm{a}} \geq 0$, and $u_{\mathrm{a}}+v_{\mathrm{a}}+u_{\mathrm{a}}=1$. Furthermore, $w_{\mathrm{a}}=0$ if $\mathrm{a}=\left\{O_{i}\right\}$ is a singleton focal set of m.
- Assumption 3b is a generalization of Assumption 3p.

A New Utility Theory for D-S Belief Functions

Example 1 (Ellsberg's urn)

- Consider lottery $L_{2}=\left[\{\$ 100, \$ 0\}, m_{2}\right]$, where $m_{2}(\{\$ 0\})=1 / 3$, and $m_{2}(\{\$ 100, \$ 0\})=2 / 3$.
- $O_{1}=\$ 100$, and $O_{r}=\$ 0$. Focal set $\{\$ 0\} \sim\left[\mathbf{O}_{2}, m_{\{\$ 0\}}\right]$, where $m_{\{\$ 0\}}(\{\$ 0\})=v_{\{\$ 0\}}=1$. No assessment is required.
- To make the assessment for $\{\$ 100, \$ 0\}$, consider a DM who wishes to find a probabilistic reference lottery $[\{\$ 100, \$ 0\},(p, 1-p)]$ that is equally preferred to $\{\$ 100, \$ 0\}$. A DM may have the following preferences: For $p<0.2$, she prefers $\{\$ 100, \$ 0\}$, and for $p>0.3$, she prefers the probabilistic reference lottery. She is unable to give us a precise p such that $\{\$ 100, \$ 0\} \sim[\{\$ 100, \$ 0\},(p, 1-p)]$. For such a DM, we assess a bf reference lottery $\left[\{\$ 100, \$ 0\}, m_{\mathrm{a}}\right]$ such that $B e l_{m_{\mathrm{a}}}(\$ 100)=0.2$, and $P l_{m_{\mathrm{a}}}(\$ 100)=0.3$, i.e., $u_{\{\$ 100, \$ 0\}}=0.2$, $v_{\{\$ 100, \$ 0\}}=0.7, w_{\{\$ 100, \$ 0\}}=0.1$.

A New Utility Theory for D-S Belief Functions

- Assumption $4 b$ (reflexive and transitive) The preference relation \succsim for $\mathcal{L}_{b f}$ is reflexive and transitive.
- In comparison with Assumption $4 p$, we do not assume that \succsim is complete. It is neither descriptive nor normative, and consistent with D-S theory philosophy of incomplete knowledge.
- Assumption $5 b$ (substitutability) In any bf lottery $L=[\mathbf{O}, m]$, if we substitute a focal element a_{i} of m by an equally preferred bf reference lottery $\widetilde{\mathrm{a}_{i}}=\left[\mathbf{O}_{2}, m_{\mathrm{a}_{i}}\right]$, then the result is a compound lottery that is indifferent to L.

A New Utility Theory for D-S Belief Functions

Theorem (Reducing a bf lottery to an indifferent bf reference lottery)

Under Assumptions $1 b-5 b$, any bf lottery $L=[\boldsymbol{O}, m]$ with focal sets $a_{1}, \ldots a_{k}$ is indifferent to a bf reference lottery $\widetilde{L}=\left[\boldsymbol{O}_{2}, \widetilde{m}\right]$, such that

$$
\begin{align*}
\widetilde{m}\left(\left\{O_{1}\right\}\right) & =\sum_{i=1}^{k} m\left(a_{i}\right) u_{\mathrm{a}_{i}}, \tag{2a}\\
\widetilde{m}\left(\left\{O_{r}\right\}\right) & =\sum_{i=1}^{k} m\left(a_{i}\right) v_{a_{i}}, \quad \text { and } \tag{2b}\\
\widetilde{m}\left(\boldsymbol{O}_{2}\right) & =\sum_{i=1}^{k} m\left(a_{i}\right) w_{a_{i}}, \tag{2c}
\end{align*}
$$

where $u_{a_{i}}, v_{a_{i}}$, and $w_{a_{i}}$, are the masses assigned, respectively, to $\left\{O_{1}\right\}$, $\left\{O_{r}\right\}$, and \boldsymbol{O}_{2}, by the bf reference lottery $\widetilde{\boldsymbol{a}}_{i}$ equivalent to a_{i}.

A New Utility Theory for D-S Belief Functions

A New Utility Theory for D-S Belief Functions

- Assumption $6 b$ (monotonicity) Suppose $L=\left[\mathbf{O}_{2}, m\right]$ and $L^{\prime}=\left[\mathbf{O}_{2}, m^{\prime}\right]$ are bf reference lotteries, with $m\left(\left\{O_{1}\right\}\right)=u, m(\mathbf{O})=w$, $m^{\prime}\left(\left\{O_{1}\right\}\right)=u^{\prime}, m^{\prime}(\mathbf{O})=w^{\prime}$. Then, $L \succsim L^{\prime}$ if and only if $u \geq u^{\prime}$ and $u+w \geq u^{\prime}+w^{\prime}$.
- Thus, $L \succsim L^{\prime}$ if and only if $\operatorname{Bel}_{m}\left(O_{1}\right) \geq \operatorname{Bel}_{m^{\prime}}\left(O_{1}\right)$ and $P l_{m}\left(O_{1}\right) \geq P l_{m^{\prime}}\left(O_{1}\right)$, i.e., if and only if outcome O_{1} is both more credible and more plausible under L than L^{\prime}.
- The corresponding indifference relation is: $L \sim L^{\prime}$ if and only if $u=u^{\prime}$ and $w=w^{\prime}$.
- It is clear that \succsim as defined in Assumption $6 b$ is reflexive and transitive.
- Thus, L and L^{\prime} are incomparable if one of the intervals $[u, u+w]$ and [$\left.u^{\prime}, u^{\prime}+w^{\prime}\right]$ is strictly included in the other.

A New Utility Theory for D-S Belief Functions

- Assumptions $1 b, 3 b$, and $6 b$ imply the following consistency constraints between the reference bf lotteries equivalent to singleton outcomes:

$$
1=u_{O_{1}} \geq u_{O_{2}} \geq \ldots \geq u_{O_{r}}=0
$$

- Our final assumption has no counterpart in the vN-M theory.
- Assumption $7 b$ (consistency) Let $a \subseteq \mathbf{O}$, and let \underline{O}_{a} and \bar{O}_{a} denote, respectively, the worst and the best outcome in a. Then we have

$$
\mathrm{a} \succsim \underline{O}_{\mathrm{a}} \quad \text { and } \quad \bar{O}_{\mathrm{a}} \succsim \mathrm{a}
$$

- Assumptions $6 b$ and $7 b$ imply that, for any focal sets a of m, we have

$$
\begin{equation*}
u_{\mathrm{a}} \geq \min _{O_{i} \in \mathrm{a}} u_{\left\{O_{i}\right\}}, \quad \text { and } \quad u_{\mathrm{a}}+w_{\mathrm{a}} \leq \max _{O_{i} \in \mathrm{a}} u_{\left\{O_{i}\right\}} \tag{3}
\end{equation*}
$$

A New Utility Theory for D-S Belief Functions

Theorem (Interval-valued utility for bf lotteries)

Suppose $L=[\boldsymbol{O}, m]$ and $L^{\prime}=\left[\boldsymbol{O}, m^{\prime}\right]$ are bf lotteries on \boldsymbol{O}. If the preference relation \succsim on $\mathcal{L}_{b f}$ satisfies Assumptions $1 b-6 b$, then there are intervals $\left[u_{\mathrm{a}_{i}}, u_{\mathrm{a}_{i}}+w_{\mathrm{a}_{i}}\right]$ associated with subsets $a_{i} \in 2^{O}$ such that $L \succsim L^{\prime}$ iff

$$
\begin{aligned}
\sum_{a_{i} \in 2^{o}} m\left(a_{i}\right) u_{a_{i}} & \geq \sum_{a_{i} \in 2^{o}} m^{\prime}\left(a_{i}\right) u_{a_{i}}, \text { and } \\
\sum_{a_{i} \in 2^{o}} m\left(a_{i}\right)\left(u_{a_{i}}+w_{a_{i}}\right) & \geq \sum_{a_{i} \in 2^{o}} m^{\prime}\left(a_{i}\right)\left(u_{a_{i}}+w_{a_{i}}\right)
\end{aligned}
$$

Thus, for a bf lottery $L=[\boldsymbol{O}, m]$, we can define $u(L)=[u, u+w]$ as an interval-valued utility of L, with $u=\sum_{a_{i} \in 2^{o}} m\left(a_{i}\right) u_{a_{i}}$ and $w=\sum_{a_{i} \in 2^{o}} m\left(a_{i}\right) w_{a_{i}}$. Also, such a utility function is unique up to a strictly increasing affine transformation.

A New Utility Theory for D-S Belief Functions

- In the imprecise literature, we have lower and upper Choquet integrals defined as follows:

Definition (Choquet integrals)

Suppose we have a real-valued function $u: \mathbf{O} \rightarrow \mathbb{R}$. The lower and upper Choquet integrals of u with respect to BPA m for \mathbf{O}, denoted by \underline{u}_{m} and \bar{u}_{m}, are defined as follows:

$$
\begin{aligned}
& \underline{u}_{m}=\sum_{\mathrm{a} \in 2^{\mathrm{o}}} m(\mathrm{a})\left(\min _{O_{i} \in \mathrm{a}} u\left(O_{i}\right)\right), \\
& \bar{u}_{m}=\sum_{\mathrm{a} \in 2^{\mathrm{o}}} m(\mathrm{a})\left(\max _{O_{i} \in \mathrm{a}} u\left(O_{i}\right)\right) .
\end{aligned}
$$

- Thus, we can regard the interval $\left[\underline{u}_{m}, \bar{u}_{m}\right]$ as an interval-valued utility of $[\mathbf{O}, m]$.

A New Utility Theory for D-S Belief Functions

- It follows from Theorem 2 and Assumption $7 b$ that

$$
\underline{u}_{m} \leq u \leq u+w \leq \bar{u}_{m}
$$

where u and w are as in Theorem 3.

- Thus, the interval-valued utility defined in Theorem 3 is always included in the lower and upper Choquet integral interval-valued utility.

A New Utility Theory for D-S Belief Functions

- A special case of Theorem 3 is if we use Bayesian bf reference lotteries for the continuity assumption (Assumption 3b), i.e., $w_{\mathrm{a}}=0$ for all focal sets a of m.

Corollary (Real-valued utility function)

Suppose $L=[\boldsymbol{O}, m]$ and $L^{\prime}=\left[\boldsymbol{O}, m^{\prime}\right]$ are bf lotteries on \boldsymbol{O}. If the preference relation \succsim on $\mathcal{L}_{b f}$ satisfies Assumptions $1 b-6 b$ and if $w_{a}=0$ for all focal sets a of m and m^{\prime}, then there are numbers u_{a} associated with nonempty subsets $a \subseteq \boldsymbol{O}$ such that $L_{1} \succsim L_{2}$ if and only if

$$
\begin{equation*}
\sum_{a \in 2^{o}} m(a) u_{a} \geq \sum_{a \in 2^{o}} m^{\prime}(a) u_{a} \tag{4}
\end{equation*}
$$

Thus, for a bf lottery $L=[\boldsymbol{O}, m]$, we can define $u(L)=\sum_{a \in 2^{o}} m(a) u_{a}$ as the utility of L. Also, such a utility function is unique up to a strictly increasing affine transformation.

Outline

Introduction
(2) $v N$-M's Utility Theory
(3) A New Utility Theory for D-S Belief Functions

4 Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

Ellsberg's Urn

Consider the bf lotteries L_{1} and L_{2} :

Lottery	$m_{i}(\{\$ 100\})$	$m_{i}(\{\$ 0\})$	$m_{i}(\{\$ 100, \$ 0\})$
$L_{1}(\$ 100$ on $r)$	$1 / 3$	$2 / 3$	
$L_{2}(\$ 100$ on $b)$		$1 / 3$	$2 / 3$

- Given a vacuous bf lottery $[\{\$ 100, \$ 0\}, m(\{\$ 100, \$ 0\})=1]$, what is an indifferent bf reference lottery? For an ambiguity-averse DM, $[\{\$ 100, \$ 0\}, m(\{\$ 100\})=1 / 2, m(\{\$ 0\})=1 / 2]$ is always preferred to $[\{\$ 100, \$ 0\}, m(\{\$ 100, \$ 0\})=1]$. Therefore, $u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100,80\}}<1 / 2$.
- L_{1} is a bf reference lottery with singleton focal sets. Therefore, $u\left(L_{1}\right)=1 / 3$.
- $u\left(L_{2}\right)=(2 / 3)\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right]$
- Thus, an ambiguity-averse DM will prefer L_{1}.

Ellsberg's Urn

Consider the bf lotteries L_{3} and L_{4} :

Lottery	$m_{i}(\{\$ 100\})$	$m_{i}(\{\$ 0\})$	$m_{i}(\{\$ 100, \$ 0\})$
$L_{3}(\$ 100$ on r or $y)$	$1 / 3$		$2 / 3$
$L_{4}(\$ 100$ on b or $y)$	$2 / 3$	$1 / 3$	

- $u\left(L_{3}\right)=(1 / 3)(1)+(2 / 3)\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right]$
- L_{4} is a bf reference lottery with singleton focal sets. Thus, $u\left(L_{4}\right)=2 / 3$
- An ambiguity-averse DM will prefer L_{4} as

$$
\frac{1}{3}+\frac{2}{3}\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right]<\frac{2}{3}
$$

as long as $u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}<1 / 2$.

- Both choices are consistent with Ellsberg's empirical findings.

One Red Ball

One red ball (Jiroušek and Shenoy 2017)

- An urn possibly contains balls of 6 colors: red (r), blue (b), green (g), orange (o), white (w), and yellow (y).
- There are n balls in the urn (n is a positive integer, and is known), and exactly one is r.
- First you pick a color, and then draw one ball at random from the urn.
- You win $\$ 100$ if the color of the ball drawn matches your pick, $\$ 0$ otherwise
- Which color do you pick?
- In informal experiments (conducted by Radim Jiroušek, subjects were graduate students familiar with vN-M's and Savage's expected utility theory), all picked r for $n=1, \ldots, 7$. For $n \geq 8$, many chose a color different from r. Some chose r even for n as high as 11 .

One Red Ball

- Let X denote the color of the ball drawn at random. The BPA m for X is as follows: $m(\{r\})=1 / n, m(\{b, g, o, w, y\})=(n-1) / n$.
- Let $L_{r}=\left[\{\$ 100, \$ 0\}, m_{r}\right]$ denote the bf lottery representing choice of color r. Then $m_{r}(\{\$ 100\})=1 / n, m_{r}(\{\$ 0\})=(n-1) / n$.
- Let $L_{b}=\left[\{\$ 100, \$ 0\}, m_{b}\right]$ denote the bf lottery representing choice of color b. Then $m_{b}(\{\$ 0\})=1 / n, m_{b}(\{\$ 100, \$ 0\})=(n-1) / n$.
- $u\left(L_{r}\right)=\frac{1}{n}$, and $u\left(L_{b}\right)=\frac{n-1}{n}\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right]$.

One Red Ball

- So, L_{b} is strictly preferred to L_{r} whenever

$$
\frac{n-1}{n} u_{\{\$ 100, \$ 0\}}>\frac{1}{n}
$$

and L_{r} is strictly preferred to L_{b} whenever

$$
\frac{n-1}{n}\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right]<\frac{1}{n} .
$$

Therefore, L_{b} is increasingly preferred to L_{r} with increasing n, which is consistent with empirical findings.

One Red Ball

- In our model, L_{r} and L_{b} are incomparable when

$$
\frac{n-1}{n} u_{\{\$ 100, \$ 0\}}<1 / n<\frac{n-1}{n}\left(u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}\right)
$$

i.e., when

$$
u_{\{\$ 100, \$ 0\}}<\frac{1}{n-1}<u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100, \$ 0\}}
$$

If forced to choose, a DM may just choose arbitrarily as the experiment in Jiroušek and Shenoy 2017 did not allow the respondents to express inability to choose between the two choices. Thus, the empirical findings does not provide any evidence for or against our model.

Two Urns with 1000 balls

Two urns with 1000 balls (Ellsberg, discussed in Becker and Brownson, 1964)

- There are 2 urns, each with 1000 balls numbered $1, \ldots, 1000$.
- Urn 1 has exactly one ball for each number.
- Urn 2 has unknown $(0, \ldots, 1000)$ number of balls of each number.
- One ball is to be chosen at random from an urn of your choice. If the number on the drawn ball matches a specific number, say 687 , then you win $\$ 100$, otherwise you win nothing, i.e., $\$ 0$.
- Which urn do you choose?
- It is reported in [Becker and Brownson, 1964] that many respondents chose Urn 2. Why? Urn 1 has only 1 ball numbered 687 , and therefore, probability of winning $\$ 100$ is small (0.001). Urn 2 could possibly have 0 to 1000 balls numbered 687 . Therefore, choice of Urn 2 is appealing.

Two Urns with 1000 balls

- Let X_{1} denote the number on the ball drawn from Urn 1, and let X_{2} denote the number on the ball drawn from Urn 2.

$$
\Omega_{X_{1}}=\Omega_{X_{2}}=\{1, \ldots, 1000\}
$$

- $m_{X_{1}}$ is a BPA for X_{1} as follow: $m_{X_{1}}(\{1\})=\ldots m_{X_{1}}(\{1,000\})=0.001 . m_{X_{2}}$ is a vacuous BPA for X_{2}.
- L_{1} corresponding to choice of Urn 1 is $\left[\{\$ 100, \$ 0\}, m_{1}\right]$, where $m_{1}(\{\$ 100\})=0.001, m_{1}(\{\$ 0\})=0.999$.
- L_{2} corresponding to choice of Urn 2 is $\left[\{\$ 100, \$ 0\}, m_{2}\right]$, where $m_{2}(\{\$ 100, \$ 0\})=1$.
- $u\left(L_{1}\right)=0.001$, and $u\left(L_{2}\right)=\left[u_{\{\$ 100, \$ 0\}}, u_{\{\$ 100, \$ 0\}}+w_{\{\$ 100,80\}}\right]$.
- Consequently, $L_{2} \succ L_{1}$ whenever $u_{\{\$ 100, \$ 0\}} \geq 0.001$, a condition that is easily satisfied. This may explain why many DMs prefer L_{2} to L_{1}.

Outline

Introduction
(2) $v N$-M's Utility Theory
(3) A New Utility Theory for D-S Belief Functions

4 Three Examples

- Ellsberg's Urn
- One Red Ball
- Two Urns with 1000 balls
(5) Summary \& Conclusions

Summary \& Conclusions

- We have proposed an axiomatic utility theory for D-S lotteries similar to vN-M's utility theory for probabilistic lotteries,
- The main difference is singleton outcomes are replaced by focal elements of m, probabilistic combination is replaced by Dempster's combination rule, and probabilistic marginalization is replaced by belief function marginalization.
- Our axiomatic theory is able to explain ambiguity attitude of human DMs that vN-M's utility theory cannot.
- While there are several probabilistic decision theories that explain ambiguity-attitude of human DMs (Becker and Brownson 1964, Einhorn and Hogarth 1986, etc.), they are not justified by simple axioms similar to vN-M's or Savage's.
- While there are many axiomatic theories using the credal set semantics of belief functions (incompatible with Dempster's rule), our axiomatic theory is the only one for D-S theory that can explain ambiguity attitude of human decision makers.

