Computing the Probabilities of Closing of 10b-5 Securities Class Action Cases

Steve Hillmer and Prakash P. Shenoy

The University of Kansas

School of Business

CBAR Seminar January 31, 2014

Outline

Problem

- Data
- Model and Results
- Limitations
- Future Work

Problem

- Given a new 10b-5 securities class-action case, filed in a Federal court, where lead plaintiff and lead plaintiff counsel have been appointed, and a consolidated amended complaint has been filed, what is the probability that the case will be dismissed?
- This problem is relevant to D&O insurance companies from a claims perspective. During 1997–2013, securities class action cases have settled for a total of \$73 billion, not including \$15 billion in plaintiff lawyers fees and an equivalent amount in defendant lawyers fees.

Problem

- This is part of a related problem from an underwriting perspective: Given a potential D&O customer,
 - What is the probability that a class-action complaint will be filed?
 - Assuming that a class-action complaint is filed, what is the probability that it will be dismissed?
 - Assuming that it is not dismissed, what are the potential settlement amounts?

Outline

- Problem
- Data
- Model and Results
- Limitations
- Future Work

 Closed 10b-5 securities class-action cases filed during 2003–2010. 1,150 such cases.

Data

• Why 2003–2010? Sarbanes-Oxley Act of 2002 has changed the characteristics of 10b-5 cases. Many of the cases in the period 2011 onwards are still pending.

Data

Sources of data:

- Advisen's Master Significant Cases and Actions database (MSCAd) for case data
- Stanford's Class Action Clearinghouse to verify case details
- COMPUSTAT for financial information about securities

The class variable is

CLOSING: with two possible values: dismissed or settled

Data

Predictor variables (in our model):

Name	Description	Possible Values	Туре	Missing?
GAAP	whether violations of generally accepted accounting principles is alleged, or not	1, 0	Nominal	
SEC_11	whether case involves filing false documents with the SEC, or not	1, 0	Nominal	
INST_INV	whether lead plaintiff is an institution, or individuals	1, 0	Nominal	
RESTATED_FIN	if re-stated financials are involved, or not	1, 0	Nominal	
BANKRUPTCY	whether bankruptcy is involved in the complaint, or not	1, 0	Nominal	
ONE_DAY_DROP	largest one-day drop in the price of the security, adjusted for market, during one year preceding the filing of the first complaint		Numeric	56%

Predictor variables we considered (but not in model):

Name	Description	Possible Values	Туре	Missing?
LPLF_Type	Lead Plaintiff Law Firm Type	U, M, L, N, X	Nominal	11%
INSIDER_TRADING	whther insider trading is alleged, or not	1, 0	Nominal	
TRANSACTIONAL	whether the case involves sale/merger/ acquisition, or not	1, 0	Nominal	
LADDERING	whether laddering is alleged, or not	1, 0	Nominal	
3RD_PARTY_BANKRUPTCY	whether the complaint is related to the bankruptcy of a 3rd party, or not	1, 0	Nominal	
IPO	whether initial public offering is involved, or not	1, 0	Nominal	
PO	whether secondary public offering is involved, or not	1, 0	Nominal	

© 2014 Hillmer-Shenoy Prob. of Closing of 10b-5 Class Action Cases 11/49

Data

Predictor variables we considered (but not in model):

Name	Description	Possible Values	Туре	Missing?	
ERISA	whether case involves a violation of the Employee Retirement Income Securities Act, or not	1, 0	Nominal		
FCPA	whether case involves Foreign Corrupt Practices Act, or not	1, 0	Nominal		
INV_IOD_INV	if case involves Dept. of Justice investigation, or not	1, 0	Nominal		
SEC_INV	whether the case involves investigation by the SEC Commission, or not	1, 0	Nominal		
TOTAL_ASSET	total assets of the company around the filing date, quarterly		Numeric	26%	
TOTAL_REV	total revenue of the company around the filing date, quarterly		Numeric	26%	

Outline

- Problem
- Data
- Model and Results
 - What are naïve Bayes (NB) models?
 - How does one use a NB model?
 - Why NB?
 - What is our NB model?
 - What are the predictors?
 - What are the parameters?
 - How good is our NB model?
 - What are the relative influences of the predictor variables?
- Limitations
- Future Work

Model and Results

- We use a naïve Bayes model to compute posterior probabilities of CLOSING given observed values of a subset of variables
- What are naïve Bayes models?

Let's construct a naïve Bayes model with, e.g., CLOSING, GAAP, and INST_INV

Adding GAAP:

Rows: GAAP Columns: CLOSING					
	Dismissed	Settled	All		
0	476	364	840		
	80%	65%	73%		
1	117	193	310		
	20%	35%	27%		
All	593	557	1150		

© 2014 Hillmer-Shenoy Prob. of Closing of 10b-5 Class Action Cases 16/49

• Adding INST_INV:

 We are assuming that given CLOSING, probabilities of INST_INV are independent of GAAP

• This model has only 5 parameters (instead of 7)

 A naïve Bayes model with 10 predictor variables would have only 21 parameters, instead of 1+2+4+8+...+1,024 = 2,047 without the independence assumption.

 Multiplication of *priors* and *likelihoods* gives us joints that add to 1.

• Suppose *GAAP* = 0. What is the posterior *Pr*(*dismissed*)?

- This way of computing posterior probabilities is not tractable when we have many predictors
- It is easier to use odds and likelihood ratios

Model and Results: Probabilities and Odds

What are odds?

- Pr(dismissed) = 0.52 is equivalent to $O(dismissed) = \frac{0.52}{1-0.52} = 1.08$
- Probabilities are on a scale from 0 to 1. Odds are on a scale from 0 to ∞
- O(dismissed) = 1.08 is equivalent to $Pr(dismissed) = \frac{1.08}{1.08+1} = 0.52.$
- O(dismissed) = 1, means Pr(dismissed) = 0.5O(dismissed) > 1, means Pr(dismissed) > 0.5O(dismissed) < 1, means Pr(dismissed) < 0.5

Model and Results: Probabilities and Odds

• Suppose *GAAP* = 0. What are the posterior *O*(*dismissed*)?

- Posterior $O(dismissed) = \frac{0.52 \cdot 0.80}{0.48 \cdot 0.65} = \frac{0.52}{0.48} \cdot \frac{0.80}{0.65}$ = $O(dismissed) \times LR(GAAP = 0) = 1.08 \cdot 1.23 = 1.31$.
 - \therefore Posterior Pr(dismissed) = 0.57.

• Suppose *GAAP* = 1. What are posterior odds of *dismissed*?

• Posterior $O(dismissed) = \frac{0.52 \cdot 0.20}{0.48 \cdot 0.35} = \frac{0.52}{0.48} \cdot \frac{0.20}{0.35} = O(dismissed) \times LR(GAAP = 1) = 1.08 \cdot 0.57 = 0.62.$ \therefore Posterior Pr(dismissed) = 0.38.

 Suppose GAAP is unknown. What are posterior odds of dismissed?

• Posterior $O(dismissed) = Prior O(dismissed) = \frac{0.52}{0.48}$ $LR(GAAP = unknown) = \frac{1}{1} = 1$

 Easy to compute posterior odds (or probabilities) of dismissed:

Posterior odds = *Prior odds* × *Likelihood ratio* of evidence

Suppose GAAP = 1, and INST_INV = 0.
Posterior O(dismissed) = O(dismissed) × LR(GAPP = 1)
× LR(INST_INV = 0)

 $= \frac{0.52}{0.48} \times \frac{0.20}{0.35} \times \frac{0.64}{0.51} = 0.78. \therefore Pr(dismissed) = 0.43.$

Model and Results: Why use NB?

Why use naïve Bayes?

- Provides probabilities of dismissed and settled;
- Can be used even if some predictor variables have missing values;
- Variables can be numeric or nominal;
- Simple—has very few parameters (# parameters is linear in # predictor variables);
- Robust—predicts well even if the independence assumption of the model is violated;

Which subset of predictor variables provides the "best" naïve Bayes model?

- By "best", we mean a model that has the lowest out-of-sample prediction errors
- Given 19 predictor variables, we have 2¹⁹ 1 = 524, 287 non-empty subsets—too many to enumerate
- We did a search using several methods: best first, random, etc.

Which subset of predictor variables results in a good naïve Bayes model?

- Answer: The subset consisting of
 - GAAP (violations of generally accepted accounting procedures allegation)
 - SEC-11 (allegations of filing false claim with SEC)
 - INST_INV (whether lead plaintiff is an institution or individuals)
 - RESTATED_FIN (whether restated financials are involved)
 - SANKRUPTCY (case is related to bankruptcy filing)
 - ONE_DAY_DROP (discretized into 2 states: < 40.5% and > 40.5%)

Naïve Bayes Model (estimated from all 1,150 cases): with priors for *CLOSING*, likelihoods for *GAAP* and *INST*₁*NV*:

	Cla		
Predictors	Dismissed	Settled	Odds/LR
	0.52	0.48	1.08
GAAP			
0	0.80	0.65	1.23
1	0.20	0.35	0.57
INST_INV			
0	0.64	0.51	1.26
1	0.36	0.49	0.73
SEC_11			
0			
1			
RESTATED_FIN			
0			
1			
BANKRUPTCY			
0			
1			
ONE_DAY_DROP			
≤ 0.405 (0)			
> 0.405 (1)			

Adding likelihoods for SEC – 11:

	Cla	SS					
Predictors	Dismissed	Settled	Odds/LR				
	0.52	0.48	1.08				
GAAP							
0	0.80	0.65	1.23				
1	0.20	0.35	0.57				
INST_INV							
0	0.64	0.51	1.26				
1	0.36	0.49	0.73				
SEC_11							
0	0.70	0.62	1.12	Rows: SEC	11 Colum	s: CLOSIN	3
1	0.30	0.38	0.80				•
RESTATED_FIN					Dismissed	Settled	ΔII
0					Distilissed	Settieu	- All
1				0	414	246	760
BANKRUPTCY				0	70%	540	700
0					70%	62%	66%
1							
ONE_DAY_DROP				1	179	211	390
≤ 0.405 (0)					30%	38%	34%
> 0.405 (1)							
				All	593	557	1150

Adding likelihoods for *RESTATED_FIN*:

	Cla	ISS					
Predictors	Dismissed	Settled	Odds/LR				
	0.52	0.48	1.08				
GAAP							
0	0.80	0.65	1.23				
1	0.20	0.35	0.57				
INST_INV							
0	0.64	0.51	1.26				
1	0.36	0.49	0.74				
SEC_11							
0	0.70	0.62	1.12	Rows: REST	TATED FIN	Columns:	CLOSING
1	0.30	0.38	0.80	NOWS. NES		columns.	CLOSING
RESTATED_FIN					Dismissed	Sottlad	All
0	0.93	0.84	1.10		Distilisseu	Jettieu	
1	0.07	0.16	0.47	0	E40	460	1019
BANKRUPTCY				0	549	409	1018
0					93%	84%	89%
1							
ONE_DAY_DROP				1	44	88	132
≤ 0.405 (0)					7%	16%	11%
> 0.405 (1)							
				All	593	557	1150

©2014 Hillmer-Shenoy Prob. of Closing of 10b-5 Class Action Cases 32/49

Adding likelihoods for BANKRUPTCY:

	Cla	ass					
Predictors	Dismissed	Settled	Odds/LR				
	0.52	0.48	1.08				
GAAP							
0	0.80	0.65	1.23				
1	0.20	0.35	0.57				
INST_INV							
0	0.64	0.51	1.26				
1	0.36	0.49	0.74				
SEC_11							
0	0.70	0.62	1.26	Rows: BAN	IKRUPTCY	Columns:	CLOSING
1	0.30	0.38	0.74				
RESTATED_FIN					Dismissed	Settled	All
0	0.93	0.84	1.10				
1	0.07	0.16	0.48	0	589	539	1128
BANKRUPTCY				0	00%	97%	0.8%
0	0.99	0.97	1.03		5570	5770	5876
1	0.01	0.03	0.21		4	10	22
ONE_DAY_DROP				1	4	18	22
≤ 0.405 (0)					1%	3%	2%
> 0.405 (1)							
				All	593	557	1150

Adding likelihoods for ONE_DAY_DROP:

	Cla	ss					
Predictors	Dismissed	Settled	Odds/LR				
	0.52	0.48	1.08				
GAAP							
0	0.80	0.65	1.23				
1	0.20	0.35	0.57				
INST_INV							
0	0.64	0.51	1.26	Baura One De	Dana Cal		CIN
1	0.36	0.49	0.74	Rows: One_Da	y_prop_Col	iumns: CLO	211/
SEC_11					Dismissed	Settled	
0	0.70	0.62	1.12		Disitilisseu	Jettieu	
1	0.30	0.38	0.80	0	230	208	
RESTATED_FIN				Ĭ	89%	85%	
0	0.93	0.84	1.10				
1	0.07	0.16	0.48	1	28	36	
BANKRUPTCY					11%	15%	
0	0.99	0.97	1.03				
1	0.01	0.03	0.21	Non-Missing	258	244	
ONE_DAY_DROP							
≤ 0.405 (0)	0.89	0.85	1.05	Missing	335	313	
> 0.405 (1)	0.11	0.15	0.74				
				All	593	557	

© 2014 Hillmer-Shenoy

Prob. of Closing of 10b-5 Class Action Cases 34/49

Model:

	Class		Odds/	
Evidence	Dismissed	Settled	Ratio	Comment
Prior	0.52	0.48	1.08	
GAAP Violation? No	0.80	0.65	1.23	Favors dismissed
GAAP Violation? Yes	0.20	0.35	0.57	Favors settled
Lead Plaintiff Institution? No	0.64	0.51	1.26	Favors dismissed
Lead Plaintiff Institution? Yes	0.36	0.49	0.74	Favors settled
SEC False Filing? No	0.70	0.62	1.12	Favors dismissed
SEC False Filing? Yes	0.30	0.38	0.80	Favors settled
Re-stated Financials? No	0.93	0.84	1.10	Favors dismissed
Re-stated Financials? Yes	0.07	0.16	0.48	Favors settled
Bankruptcy? No	0.99	0.97	1.03	Favors dismissed
Bankruptcy? Yes	0.01	0.03	0.21	Favors settled
Largest 1-day Drop is ≤ 40.5%	0.89	0.85	1.05	Favors dismissed
Largest 1-day Drop is > 40.5%	0.11	0.15	0.74	Favors settled

©2014 Hillmer-Shenoy

Prob. of Closing of 10b-5 Class Action Cases 35/49

Model and Results: Using our NB model

If all predictors are No:

		Odds/Likelihood
Evidence		Ratios for dismissed
Prior		1.08
GAAP Violation?	No	1.23
SEC False Filing?	No	1.12
Lead Plaintiff Institution?	No	1.26
Re-stated Financials?	No	1.10
Bankruptcy?	No	1.03
Largest 1-day Drop in		
Stock Price	≤ 40.5%	1.05

- Odds for *dismissed*
 - $= 1.08 \cdot 1.23 \cdot 1.12 \cdot 1.26 \cdot 1.10 \cdot 1.03 \cdot 1.05 = 2.22$
- Probability of dismissed = $\frac{2.22}{3.22} = 0.69$

Model and Results: Using our NB model

If all predictors are Yes:

		Odds/Likelihood
Evidence		Ratios for dismissed
Prior		1.08
GAAP Violation?	Yes	0.57
SEC False Filing?	Yes	0.80
Lead Plaintiff Institution?	Yes	0.74
Re-stated Financials?	Yes	0.48
Bankruptcy?	Yes	0.21
Largest 1-day Drop in		
Stock Price	≥ 40.5%	0.74

- Odds for *dismissed*
 - $= 1.08 \cdot 0.57 \cdot 0.80 \cdot 0.74 \cdot 0.48 \cdot 0.21 \cdot 0.74 = 0.03$
- Probability of *dismissed* = $\frac{0.03}{1.03} = 0.03$

Model and Results: Using our NB model

 If predictors are as follows (e.g., Panera Bread Company, 2008, E. D. Missouri):

		Odds/Likelihood
Evidence		Ratios for dismissed
Prior		1.08
GAAP Violation?	Yes	0.57
SEC False Filing?	No	1.12
Lead Plaintiff Institution?	Yes	0.74
Re-stated Financials?	No	1.26
Bankruptcy?	No	1.03
Largest 1-day Drop in		
Stock Price	?	

- Odds for dismissed
 - $= 1.08 \cdot 0.57 \cdot 1.12 \cdot 0.74 \cdot 1.26 \cdot 1.03 = 0.58$
- Probability of dismissed = $\frac{0.58}{1.58} = 0.37$

- For each case, we compute the *Pr*(*dismissed*) based on a naïve Bayes model whose parameters are estimated from the other 1,149 cases (Lachenbruch procedure).
- We sort the cases by *Pr(dismissed)*, highest to lowest, and divide the set of all cases into 5 groups of 230 cases each (quintiles). The characteristics of each quintile are as follows:

Using Lachenbruch	Quintile					
	# 1	# 2	# 3	# 4	# 5	All
Max Pr(dismissed)	69%	68%	60%	50%	37%	69%
Min Pr(Dismissed)	68%	60%	50%	37%	7%	7%
Avg. Pr(Dismissed)	68%	62%	55%	46%	28%	52%
# dismissed	131	150	135	101	76	593
# settled	99	80	95	129	154	557
Proportion dismissed	57%	65%	59%	44%	33%	52%
Proportion settled	43%	35%	41%	56%	67%	48%

How well can our NB model predict CLOSING?:

 This procedure is repeated with each case as a hold-out case (Lachenbruch)

Confusion matrix using the Lachenbruch procedure:

# cases		Predicted		
		Dismissed	Settled	Totals
Actual	Dismissed	423	170	593
	Settled	274	283	557

- # incorrect predictions is 274 + 170 = 444 cases (39%)
- A naïve strategy of predicting all cases as dismissed would have an error of 557 (48%)
- So "lift over marginal" is 557 444 = 113 cases (10%)
- The search method for identifying a good subset uses # incorrect predictions as an objective to be minimized

Model and Results: Relative influence of each predictor

What is the relative influence of each predictor variable?

 For each variable, we removed it from the set of 6 predictor variables, and observed the increase in # incorrect predictions as a result.

Results are as follows:

Model and Results: Relative influence of each predictor

- Relative influence of predictors depends on likelihood ratio, and frequency of occurrence:
 - Smaller the likelihood ratio, higher the influence
 - Higher the frequency of occurrence, higher the influence

	Likelihood Ratio for	Frequency,	Increase in prediction
	dismissed	cases	error, cases
GAAP Violation is yes	0.57	310	42
SEC False Filing is yes	0.80	390	21
Lead Plaintiff Institution is yes	0.74	490	20
Re-stated Financials is yes	0.48	132	11
Bankruptcy is yes	0.21	22	10
Largest 1-day drop is > 40.5%	0.74	64	6

Outline

- Problem
- Data
- Model and Results
- Limitations
- Future Work

Limitations

- History of past cases is used to predict the future, which assumes that future will be like the past
- Changes in accounting rules or litigation laws could change the filing and closing of securities class action cases
- We have too many (56%) missing values for ONE_DAY_DROP. Our model may perform better if we had fewer missing values
- Model built is only as good as the data—errors in the data will result in errors in the model

Outline

- Problem
- Data
- Model and Results
- Limitations
- Future Work

Future Work

- For each case, we know the judge who made the judgment to dismiss/not dismiss. Judges have a history of ruling on civil cases. Also we know which president (Democrat or Republican) appointed the judges. Can we use such information to improve our model?
- Financial re-statements can be classified as *core/non-core*, materially significant or not. Can we take advantage of such classifications of financial re-statements to predict closing?

Future Work

- Are there other variables (not in Advisen data set) that we can use to predict closing? E.g.,
 - Stock options for CEO and board members that provide perverse incentives to ratchet up stock prices at exercise dates (C Shenoy)
 - Conservatism of reporting earnings (Ettredge)
 - Insider selling of securities based on insider information
 - Short interest (Meschke)
 - Notoriety of the class action case (Meschke)