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Abstract 

In today’s world, people spend a significant proportion of their active hours in enclosed workplaces. 

Workplace environment is closely tied to an individual’s wellbeing. We conduct a field study using 

wearable devices to determine the impact of indoor environment on individual wellbeing. In our study, 

participants carry out their day to day activities while wearing sensors that continuously record their 

physiological wellbeing state and ambient environmental conditions including sound level. We observed 

that the relationship between sound level and two physiological wellbeing measures (i.e., SDNN, 

normalized-HF) is curvilinear and varies across individuals. For modeling the dynamics of the sound-

wellbeing relationship, we propose new methods for representing curvilinear effects, simultaneous 

modeling of multiple outcomes, and identifying factors contributing to between-individual heterogeneity. 

We show that our methods have better model fit as well as predictive performance than existing methods 

for each of the three modeling problems. We find that an individual’s physiological wellbeing is optimal 

when sound level in the workplace is 50 dBA. For sound amplitudes lower than 50 dBA, a 10 dBA increase 

in sound level is related to a 3.6% increase in physiological wellbeing; whereas for amplitude above 50 

dBA, a 10 dBA increase in sound level is related to decrease in physiological wellbeing by 1.3%. Age, 

body-mass-index, high blood pressure, anxiety and computer use intensive work are person level factors 

contributing to heterogeneity in effects of sound level on physiological wellbeing across individuals. 

Workers with higher blood pressure are more negatively affected by increase in sound levels than others. 

Workers with computer intensive work are more negatively affected by sound level extremities of low 

sound (i.e., quietude) or high sound (i.e. noise) than others. Our study informs policies and practices that 

affect the health and wellbeing of office workers worldwide. It proposes new quantitative methods to 

address key challenges in modeling digital data generated using wearable devices.            
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1. Introduction 

Nearly 50 million workers in the United States spend over one-fifth of their time at their workplace 

(Bureau of Labor Statistics 2017). On an average, four out of ten US workers report their job and workplace 

to be stressful and affecting their wellbeing (Harvard School of Public Health 2016). Workplace-related 

stress and absenteeism cost up to $225 billion, or more than 10% of office workers’ contribution to the US 

GDP (CDC Foundation 2018). Research shows that our workplace environment is closely tied to our mental 

state, productivity, and physiological wellbeing (Heerwagen and Zagreus 2005; MacNaughton et al. 2016; 

Thayer et al. 2010).  

Workplace sound level7 has been identified as a significant stressor in the past (Frontczak et al. 2012; 

Seidman and Standring 2010). The psychosocial effects of high sound levels (i.e., loud noise) including its 

effects on satisfaction, environmental control, social interaction, social support, and perceived insensitivity 

to social cues in a workplace setting have been studied previously (Rashid and Zimring 2008). However, 

the underlying mechanism of sound effects on wellbeing at workplace is not yet fully understood (Kraus et 

al. 2013). Existing sound-wellbeing studies have employed controlled experiments with few subjects, 

limited set of treatments and controls. They suffer from low external validity, as the real office environment 

ecosystem is more complex than simulated environments. Current understanding of sound level effects on 

physiological wellbeing (i.e., sound-wellbeing) at the workplace is also limited by the ability of standard 

methods (e.g., analysis of variance, linear regression, etc.) to capture different aspects of the sound-

wellbeing relationship.  

We conducted a field study using multiple wearable devices to determine the impact of indoor 

environment on individual wellbeing. In our study, participants carry out their day to day activities while 

wearing sensors that continuously record their (short-term) physiological wellbeing state and ambient 

                                                 
7 Section 3 of supplementary materials presents a reference for subjective reference of different sound levels in real 
world   
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environmental conditions including sound level. We observed that the relationship between sound level and 

two physiological wellbeing measures (i.e., SDNN, normalized-HF) is curvilinear and varies across 

individuals. We propose new methods to address challenges in representing curvilinear effects, 

simultaneous modeling of multiple outcomes, and identifying factors contributing to individual 

heterogeneity in effects. The first method is a semi-automated method for change point determination in 

multilevel segmented regression models for representing curvilinear relationships. The second method is a 

Bayesian latent variable modeling method for simultaneous modeling of multiple outcomes. The third 

method tackles the problem of modeling individual heterogeneity in the sound-wellbeing relationship using 

a two-step approach; modeling the heterogeneity using a Bayesian varying coefficients models followed by 

identification of person-level factors contributing to the heterogeneity using regularized models. We show 

that our proposed methods have better predictive performance than existing methods and are elemental in 

developing critical insights about the sound-wellbeing relationship in the workplace.   

Our major findings on the workplace sound-wellbeing relationship are as follows. A sound level 

threshold value of 50 dBA (averaged at 5-minute interval) is optimal for physiological wellbeing. A 10 

dBA increase in sound levels below 50 dBA is related to a 3.6% increase in physiological wellbeing whereas 

a 10 dBA increase in sound levels above 50 dBA is related to decrease in physiological wellbeing by 1.3%. 

Blood pressure level and computer intensive work are two individual personality factors that moderate the 

relationship between sound levels and physiological wellbeing. People with higher blood pressure are 

negatively affected by increase in lower as well as higher sound levels. Computer intensive work is related 

to an amplification of positive effect of lower sound levels as well as negative effect of higher sound levels. 

Our findings show that quiet workstations are optimal for the physiological wellbeing of office-workers 

with high blood pressure, whereas workspaces with moderate sound levels (~50dBA) are suitable for 

workers with computer intensive work. 

In this study, we make three major contributions. First, to our knowledge, our paper is the first to 

implement a field study using multiple wearable devices to model the environment-wellbeing phenomenon. 
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Second, our study proposes new quantitative methods addressing three key challenges in modeling digital 

data generated by wearable devices (i.e., curvilinear modeling, simultaneous modeling, individual 

heterogeneity effects modeling). Lastly, it unravels aspects of the sound-wellbeing relationship that were 

unknown earlier, thus informing workplace planning policies and practices that affect the health and 

wellbeing of office workers worldwide. 

The rest of this paper is organized as follows. In Section 2, we introduce the study background and 

related literature. In Section 3 and Section 4, we describe our field study using wearable devices and the 

need for new modeling methods. In Section 5, we expound on the three new methods for sound-wellbeing 

modeling. Section 6 contains the evaluation of our methods and key-learning based on their application on 

our data, followed by the discussion and conclusions in Section 7 and Section 8 respectively.  

2. Background and Related Literature  

2.1 What is Physiological Wellbeing? 

Psychological well-being consists of positive relationships with others, personal mastery, autonomy, a 

feeling of purpose and meaning in life, and personal growth and development (Ryff 1989). On the other 

hand, physiological wellbeing is associated with a dynamic, ever-adapting balance in the human 

physiological system conditioned by momentary demands (Malik et al. 1996). When we are in good health 

or at a higher physiological wellbeing state, we experience flexibility and resilience in relation to our 

environment and experiences.  

Stress is a major factor that impacts physiological wellbeing (Boron and Boulpaep 2012). The 

physiological stress response or physiological response to the demands put upon the body has a direct 

relationship with the two components of the autonomic nervous system (ANS) - Sympathetic nervous 

system (SNS) and the parasympathetic nervous system (PNS). When the body is stressed, the SNS generates 

the “fight or flight” response where the body shifts all of its energy resources toward fighting off a life 

threat. Whereas the PNS indicates the “rest and digest” and is involved with restoration and repair, 
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nourishment and detoxification processes in the body. Heart rate variability (HRV) reflects the modulation 

in the normal rhythm of the heart and is known to assess overall cardiac health and the state of the ANS. 

HRV is considered as a proxy measure for the physiological wellbeing of a person, i.e., higher its value, 

higher the wellbeing (Xhyheri et al. 2012). HRV is more widely used when compared to other physiological 

stress response measures such as salivary cortisol and skin conductance as it can be measured at short 

intervals using commercially available heart rate monitors and is least intrusive (Acharya et al. 2006; 

Xhyheri et al. 2012). While many measures of HRV exist, each serves as a slightly different lens in terms 

of viewing the body’s physiological stress response (Shaffer and Ginsberg 2017). The mean of standard 

deviation for all successive R-R intervals (SDNN) is a global index of HRV and reflects longer term 

circulation differences or the overall activity in the ANS. Normalized high frequency component 

(normalized-HF) is the ratio between absolute value of the High Frequency and difference between Total 

Power and Very Low Frequency bands in the power spectrum of frequency domain of heart rate that 

emphasizes changes in parasympathetic regulation. High values of SDNN and normalized-HF have 

consistently been found to indicate better health and wellbeing (Soares-Miranda et al. 2014). 

2.2 Workplace and Wellbeing 

White-collared office workers in USA spend a majority of their active hours in a day in enclosed 

workplaces (Bureau of Labor Statistics 2017). The workplace environment not only affects people at work 

(Heerwagen and Zagreus 2005), but is also known to have a carry-over effect on our personal lives outside 

office (Lindberg et al. 2018). Workplace characteristics consist of elements such as workstation design (i.e., 

workstation type, workstation area, furniture, nature view, etc.), indoor environment quality (i.e., ambient 

sound levels, temperature, humidity, air quality, etc.), social influence (i.e., interaction with colleagues in 

close vicinity, proximity with team members, tele-working facilities, etc.) and amenities (i.e., proximate 

breakout areas, availability of quiet spaces, control over thermostat and window-blinds, etc.). Indoor 

environment quality of the workplace is closely tied to mood, productivity, activity and longevity of office 

workers (Backé et al. 2012; Kivimäki et al. 2012). Air-quality factors such as carbon dioxide are shown to 
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have impair cognitive performance and degrade physiological wellbeing at workplace (MacNaughton et al. 

2016). Workstation type (e.g., open bench seating, cubicles, private space, etc.) and structure (e.g., length 

of passage, furniture, workstation area, etc.) also has an effect on worker’s stress and physiological 

wellbeing (Lindberg et al. 2018; Thayer et al. 2010). Intervention based controlled experiments and analysis 

of variance have been the traditional approaches in analyzing the indoor environment-wellbeing 

phenomenon (MacNaughton et al. 2016; Rashid and Zimring 2008).   

2.3 Workplace sound levels and Wellbeing 

Sources of sounds in offices include other people’s conversations, telephone-calls, and mechanical 

equipment. High ambient sound levels or noise in the work environment is reported to be one of the highest 

stressors in workplaces in the US (Heerwagen and Zagreus 2005). There is substantial literature on the 

effects of sound in office settings on different aspects of wellbeing in workplace such as social, 

psychological, physiological and performance (Jahncke et al. 2011; Kjellberg et al. 1996; Kraus et al. 2013; 

Rashid and Zimring 2008). Table 1 lists literature on effects of sound levels on physiological wellbeing in 

chronological order.  

Table 1: Literature on effect of workplace sound levels on social, psychological and physiological 
wellbeing 

Study Input Outcome(s) Study design Findings 
(Lusk et al. 
2002) 

Areas with 
sound levels 
averaged 
across a 5 
years 
interval 

Blood pressure 
and heart rate 

N=374; Correlating 
person-level noise 
exposure with 
physiological wellbeing; 
Method: Linear 
regression 

Areas with high sound 
levels are predictive of 
increase in blood 
pressure 

(Lee et al. 
2010) 

Discrete 
sound levels 

HRV (LF, 
LF/HF), Mean 
blood pressure, 
Mean heart rate 

N=16; Treatment = 
Sound level exposure of 
No noise, 50 dBA, 60 
dBA, 70 dBA and 80 
dBA for 5 minutes with 
2 minutes interval; 
Method: Repeated 
measures ANOVA; 
Spearman’s Rho 

HRV decreases with 
higher sound level 
exposures, but no 
change in blood 
pressure and mean 
heart rate  
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(Jahncke et 
al. 2011) 

Noisy 
background, 
river 
sounds, 
nature 
movie 

Cortisol, 
Catecholamines, 
self-rating of 
tiredness, mood 

N=47; Treatment = 
Completed tasks for 2 
hours each in a low and 
high noise conditions; 
Repeated measures 
ANOVA 

Though noisy 
background and river 
sounds have an effect 
on psychological 
outcomes, they had not 
significant effect on 
physiological outcomes 

(Kraus et al. 
2013) 

Sound levels HRV (LF/HF, 
SDNN, RMSSD) 

N=110; Prospective 
panel study with 
participants spending 
upto 7.5 hours in a 
room; Method = 
Additive mixed models 

Sound levels have a 
positive effect below 65 
dBA on SDNN, but is 
not significantly related 
to any of the other 
outcomes 

(Sim et al. 
2015) 

Sound 
types, sound 
levels 

HRV (SDNN, HF, 
LF/HF) 

N=40; Treatment: 45 
dBA exposure for 5 
minutes; Method: Linear 
regression 

Sound types do not 
have a significant effect 
on physiological 
outcomes 

(Walker et 
al. 2016) 

Noise 
exposure at 
75 dBA at 
low 
frequency 
and high-
frequency 

HRV (SDNN, LF, 
RMSSD), blood 
pressure, salivary 
cortisol  

N=10; Treatment = 40 
minutes noise exposure; 
Method=Multivariate 
multilevel regression 

High sound levels at 
low-frequencies and 
high-frequencies 
negatively affect 
physiological wellbeing 

(Park and 
Lee 2017) 

Floor impact 
noises 
ranging 
from 31.5 
dBA to 63 
dBA 

Noticeability, 
Annoyance, Heart 
rate, electrodermal 
activity, 
respiration rate 

N=21; Treatment = 5 
sessions of 15 minutes 
of different floor impact 
noises; 
Method=Repeated 
measures ANOVA 

Annoyance, 
noticeability, 
electrodermal activity 
and respiration rate 
increases with sound 
level, but no significant 
change in heart rate 

(Cvijanović 
et al. 2017) 

Sound levels Mental effort, 
HRV (LF, LF/HF) 
and skin 
conductance 

N=40; Treatment = 6 
dBA background noise 
added while participants 
completed collaborative 
tasks; 
Method=Multilevel 
regression  

Though mental effort 
required increases with 
sound levels, effect on 
physiological wellbeing 
was not significant 

 

Early sound-wellbeing studies shown that higher sound frequencies as well as higher sound levels are 

detrimental to a worker’s psychological and physiological wellbeing (Kjellberg et al. 1996; Landström et 

al. 1995; Lusk et al. 2002). However, the effects are not dependent on underlying sound type (i.e., 

conversation, mechanical noise, traffic sounds, etc.) (Sim et al. 2015). Recent studies identified that effect 

of sound levels on physiological wellbeing is not monotonic (Kraus et al. 2013), and are instantaneous 
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(Srinivasan et al. 2017). Previous studies employ controlled experiments with few subjects and standard 

modeling methods to determine the sound-wellbeing relationship, and are either inconclusive or 

contradicting each other (Cvijanović et al. 2017; Park and Lee 2017; Sun Sim et al. 2015). Even though, 

sound-wellbeing relationship is not linear (Kraus et al. 2013), the nature of its relationship (i.e., where the 

function is optimal, how wellbeing varies as a function of sound level) is still not clear. Further, reporting 

results from multiple models corresponding to different measures of physiological wellbeing (Cvijanović 

et al. 2017; Park and Lee 2017; Sim et al. 2015) makes it difficult for interpretation and decision-making 

based on findings. Finally, even though previous studies account for the heterogeneity in sound effects on 

wellbeing by fitting multilevel regression model, the heterogeneity has not been modeled explicitly.  

3. Field study using wearable devices 

We conducted a multi-phase field study between 5th May 2015 and 25th August 2016 as part of the US 

General Services Administration’s Wellbuilt-for-Wellbeing (WB2) research program to understand the 

impact of indoor environment on wellbeing of office-workers (Sternberg et al. 2016). In the study, self-

described healthy adult workers involved in a variety of office-based roles for the US government were 

recruited across four federal office buildings in the Mid-Atlantic and Southern regions of the USA. 

Buildings were selected for their representation of common office workstation types across the US General 

Services Administration’s portfolio of over 370 million square feet of office space that houses over 1 million 

employees. Staff in sections of each office building from organizations with leadership approval were 

offered the opportunity to participate. After giving written informed consent, participants completed an 

intake survey consisting of demographic questions. Participants wore two sensors for three days while 

carrying out their day-to-day activities, (a) a heart and physical activity monitor, and (b) a personal 

environment quality sensor-based device. The study also included experience sampling mobile surveys to 

collect perceived (psychological) responses of individuals at periodic intervals of 1-2 hours, stationary 

environmental sensors mounted on multiple walls in the study areas. Figure 1 shows a visual representation 
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of the data collection mechanism used in the study using wearable devices, mobile-based surveys and wall-

mounted sensors. The heart and physical activity monitor is a chest-worn wearable device named EcgMove 

3 developed by movisens (Verkuil et al. 2016). The personal-environment quality sensor-based device is a 

multi-modal sensing neckwear device developed by Aclima, Inc. that measures ambient environment 

conditions including sound levels. Sound level exposure was measured as A-weighted continuous sound 

pressure levels reported in units of A-weighted decibels (dBA); a measurement of the relative loudness of 

sounds relative to absolute silence as perceived by the human ear.        

 
Figure 1: WB2 study data collection mechanism consisting of two wearable sensors, a mobile survey 

application and wall mounted sensors 

Our study tracks effects of environment factors on physiological wellbeing of workers in the naturalistic 

setting of an office workplace without doing any interventions. Our comprehensive data collection 

mechanism consists of multiple wearable sensors, mobile survey prompts, wall-mounted sensors and other 
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offline information (i.e., calendar data, workstation characteristics, work type, etc.). Sensors are worn by 

multiple participants for a long period of time with participation from different office buildings over an 

entire year.  

4. Preliminary analysis  

We trained a (two-level) multilevel regression model for our data for different physiological outcomes 

as shown below: 

 
𝑦𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + ∑ 𝛽𝑘𝑥𝑘𝑖𝑗

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

+ 𝜖𝑖𝑗  (1) 

In Equation (1), 𝑦𝑖𝑗 is the physiological wellbeing measure (i.e., SDNN, RMSSD, normalized-HF) for the 

𝑖𝑡ℎ observation and 𝑗𝑡ℎindividual, 𝛽0 is the fixed intercept, Β = {𝛽1, … , 𝛽𝐾} are coefficients for 𝐾 fixed 

effects {𝑥1, 𝑥2, … , 𝑥𝐾}, Γ0 = {𝛾01, 𝛾02, … , 𝛾0𝑗 , … , 𝛾0𝐽} are J random intercepts for each individual, Γ =

{𝛾11, … , 𝛾1𝑗 , … , 𝛾𝑀𝐽}  are coefficients for 𝑀 𝑋 𝐽 random effects {𝑧1, 𝑧2, … , 𝑧𝑀}, and 𝜖𝑖𝑗  is the residual error. 

We assume a variance component structure for the covariance matrix of the random effects coefficients, 

since it makes the least assumptions (Raudenbush and Bryk 2002). Sound level was included as a fixed 

effect as well as random effect in the model. We considered including higher-levels in the multilevel model 

(i.e., organization type, buildings, participant cohorts, work type, etc.) but the model fit did not improve 

significantly and hence we restrict the model to vary at two levels, i.e., for variables varying at within-

individual level (level-1), and for variables varying at between-individual level (level-2) in the data. 

Consistent with previous studies (Kraus et al. 2013; Lee et al. 2010), we observed a curvilinear 

relationship between sound levels and physiological wellbeing measures (i.e., SDNN, normalized-HF) in 

two dimensional scatter plots. We found that the fixed-effect of sound level variable in the two univariate 

multilevel regression models for SDNN and normalized-HF as outcomes were significant, i.e., 

𝛽𝑆𝑜𝑢𝑛𝑑,𝑆𝐷𝑁𝑁 =  0.1038 (𝑝 = 0.0000), 𝛽𝑆𝑜𝑢𝑛𝑑2,𝑆𝐷𝑁𝑁 = −0.0075 (𝑝 = 0.0000), 𝛽𝑆𝑜𝑢𝑛𝑑,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑−𝐻𝐹 =
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 −0.0979 (𝑝 = 0.0000), 𝛽𝑆𝑜𝑢𝑛𝑑2,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑−𝐻𝐹 = 0.0013 (𝑝 = 0.015). Thus, we can infer that sound 

level has a curvilinear effect on SDNN and normalized-HF.  

Secondly, we found that including sound level as a random-effect improve the quality of fit of the 

multilevel model. This implied that the effect of sound level on the two physiological wellbeing measures 

varies across individuals. To study the sound-wellbeing relationship further, we therefore required methods 

to (a) Model the curvilinear relationship of sound level on two physiological wellbeing measures (i.e., 

SDNN and normalized-HF), (b) Simultaneously model the effects of sound level on two different measures 

of physiological wellbeing (i.e., SDNN and normalized-HF), and (c) Model the heterogeneity in the effects 

of sound on physiological wellbeing. In the next section, we consider each modeling problem, review 

corresponding modeling methods literature, identify the research gaps, and present new methods to address 

the corresponding modeling challenges.   

5. Modeling Methods  

5.1 Modeling curvilinear effects 

Research question: How can we effectively model curvilinear relationships between sound level and the 

two wellbeing measures (i.e., SDNN and normalized-HF)? 

5.1.1 Existing methods 

A curvilinear relationship between an input and an outcome is commonly observed in IS (Liu and 

Goodhue 2012; Pant and Srinivasan 2010; Xue et al. 2011) and other disciplines (Geng et al. 2017). 

Polynomial regression models account for higher order relationships but they are not directly interpretable 

(Durban et al. 2005). Segmented regression is an optimal approach for modeling curvilinear relationships 

as it is robust, has fewer underlying assumptions and is easier to interpret (Jirschitzka et al. 2016). The 

primary challenge in using a segmented regression approach is the determination of change points linking 

the input segments (Shuai et al. 2003). Common procedures to determine change points in segmented 
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regression models for simple data (Shuai et al. 2003) cannot be used for modeling the sound-wellbeing 

relationship as determination of the likelihood function is not straightforward for the multilevel data 

structure in our study. A recent method was proposed based on maximum-likelihood estimation of a 

continuous functional approximation of the piece-wise linear function (Muggeo et al. 2014) as an alternative 

to subjective assignment based on visualization of pair-wise plots (Kraus et al. 2013). However, this method 

estimates multiple change points automatically with no scope for user inputs into the estimation process 

(e.g., including or dropping change points if they are at extremities of the input distribution, etc.). Therefore, 

existing procedures for determining change points in studies employing segmented models for sound-

wellbeing are either ad-hoc or analytically complex, leading to problems such as low external validity and 

overfitting respectively. To summarize, there is a need for a validated method to determine the change 

points in segmented multilevel models that is robust, efficient and transparent. With such a method, we can 

accurately determine change points that create piece-wise linear functions of the sound-wellbeing 

relationship facilitating direct interpretation from the linear model.  

5.1.2 Semi-automated change point determination method  

Consider the multilevel model described in Section 4. Sound level as an input variable varying at level-

1 (i.e., fixed-effect) and having a curvilinear relationship with the outcome can be expressed as sum of 

segmented variables as follows: 

 𝑥𝑟 = 𝑥1𝑟 · 𝐼(𝑥𝑟 < 𝜂1) + 𝑥2𝑟 · 𝐼(𝜂1 ≤  𝑥𝑟 < 𝜂2) + ⋯ +  𝑥𝑘𝑟 · 𝐼(𝜂𝑘 ≤  𝑥𝑟) (2) 

In Equation (2), Η = {𝜂1, 𝜂2, … , 𝜂𝑘} is a set of 𝑘 change points defined for the input variable 𝑥𝑟. 𝐼(𝜑) is an 

indicator function equal to 1 if condition 𝜑 is true else 0. As can be seen, the problem here is to estimate 

each change point 𝜂𝑖 as well as to determine the total number of change points 𝑘. We propose a three step 

semi-automated method to estimate the change points and determine 𝑘 as follows:  

Step I: Fit a Generalized additive mixed model and visualize component smooth functions 
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Fit input 𝑥𝑟  as a non-parametric spline in a Generalized Additive Mixed Model (GAMM) and visualize 

its component smooth function (Faraway 2006). Identify the order of the curve by inspecting the number 

of extrema (i.e., minima and maxima) and set value of 𝑘. Note the value of the maxima and minima to be 

used as starting points in a linear search algorithm in the next step. This step also is used to determine 

whether or not to opt for a segmented model, over a linear model, by inspecting the curvilinear nature of 

component smooth function. 

Step II: Perform a linear search for change points using optimization with box constraints. 

Consider a model fit metric such as Akaike information criteria (AIC), Bayesian information criteria 

(BIC), Deviation or Mean-squared error as an optimizing function. Select a suitable range around each 

starting point selected in step I and run the optimization algorithm with the given range as a box constraint 

(Brent 2013). Select set of change points Η that maximize model fit. 

Step III: Fit the segmented multilevel regression model as shown below:  

 
𝑦𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + ∑ 𝛽𝑟𝑠𝑥𝑟𝑖𝑗𝐼(𝑥𝑟𝑖𝑗 ∈ 𝑠 )

 𝑠 ∈𝑆

+ ∑ 𝛽𝑘𝑥𝑘𝑖𝑗

𝐾

𝑘=1,   𝑘 ≠𝑟  

+  ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

+ 𝜖𝑖𝑗 (3) 

In Equation (3), 𝑆 is a set of segments constructed using change points Η identified in Step II for input 𝑥𝑟. 

Significance of the effect of input variable 𝑥𝑟 at each segment 𝑠 can be determined by inspecting the 

corresponding fixed effects coefficient 𝛽𝑟𝑠, under regular conditions.  

5.2 Simultaneous modeling of multiple outcomes 

Research question: How can we simultaneously model the relationship between sound level and two 

wellbeing measures (i.e., SDNN and normalized-HF)? 

5.2.1 Existing methods 

Existing studies analyzing effect of sound level on multiple physiological wellbeing measures fit a 

different model for each outcome and report coefficients for each of the models separately (Cvijanović et 
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al. 2017; Kraus et al. 2013; Park and Lee 2017; Sim et al. 2015). Interpretation and communication of 

results from multiple models for decision-making can be challenging. A statistical model with a single set 

of coefficients for multiple outcomes is suitable for this purpose and known as simultaneous modeling 

(Baldwin et al. 2014; Das et al. 2004; Pituch and Stevens 2016). Simultaneous modeling differs from 

multivariate modeling where coefficients are estimated for each outcome along with cross-correlation 

parameters (Lin et al. 2017; Ritz et al. 2017). For example, for three outcome and three inputs, a 

simultaneous multiple regression model will contain three coefficients (excluding the intercept) whereas a 

multivariate regression modeling procedure will estimate nine coefficients (excluding the intercepts for 

outcomes) and corresponding covariance between the coefficients. Simultaneous modeling can be done by 

carrying out a univariate transformation of the outcomes after accounting for heterogeneity in error 

variances (Baldwin et al. 2014; Faraway 2016; Pituch and Stevens 2016). In the univariate transformation 

method, even though different outcomes have different error variances in the model, the effects of input 

variables are assumed to be uniform across outcomes. For example, for a model measuring stress using 

breathing rate and heart rate as two health indicators, one can expect that the effects of inputs on each of 

the outcomes are different in scale. Latent variable modeling is an alternative approach for simultaneous 

modeling of multiple outcomes (Muthén 2002). However, classical latent variable modeling approaches 

(e.g. structural equation modeling) traditionally require individual items of a latent construct to be 

theoretically related and have construct validity (Kline 2012). Secondly, for multilevel modeling, diagnostic 

checking for structural equation modeling is more challenging to satisfy all the assumptions required in the 

classical approach (Hox 2013). The estimation procedure becomes more complex with a large number of 

random effects. Hence, there is a need for a new method that can overcome challenges of existing methods. 

Such a method can be used for making inferences over effects of sound level on the two physiological 

wellbeing measures, SDNN and normalized-HF in our study.  
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5.2.2 Bayesian latent variable modeling method  

Consider a Bayesian latent variable model (Merkle and Wang 2016) for outcomes 𝑌 =

{𝑦1, 𝑦2, … , 𝑦ℎ , … , 𝑦𝐻}  as follows: 

 𝑦𝑖ℎ| 𝜃𝑖 , 𝛾ℎ , 𝜆ℎ , 𝜎ih ~ 𝑁(𝜇𝑖ℎ , 𝜎𝑖ℎ
2 ) (4) 

 
𝜇𝑖ℎ = 𝛾ℎ +  ∑ 𝜆ℎ𝑘𝜃𝑖𝑘

𝑚

𝑘=1

 (5) 

 𝜃𝑖𝑘~ 𝑁𝑚(0, Φ) (6) 

For simultaneous modeling, we set 𝑚 = 1 in the above equation and express the latent variable as an 

outcome of a multilevel regression model as shown below:   

 
𝜃𝑖𝑗 =  𝛽0 +  𝛾0𝑗 + ∑ 𝛽𝑘𝑥𝑘𝑖𝑗

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

+ ξ𝑖𝑗 (7) 

 𝛾0𝑗  ~ 𝑁(0, 𝜎𝛾0
2 ), 𝛾𝑚𝑗  ~ 𝑁(0, 𝜎𝛾𝑚

2 ), ξ𝑖𝑗~ 𝑁(0, 𝜎𝜃
2) (8) 

Upon centering the outcomes and dropping the outcome intercept parameter 𝛾ℎ, we can combine the within-

individual level error variances (i.e., 𝜎𝑖ℎ
2  and  𝜎𝜃

2). The resultant Bayesian latent variable model is 

represented as follows: 

 
𝑦ℎ𝑖𝑗 −  𝑦ℎ𝑖𝑗̅̅ ̅̅ ̅ =  (𝛽0 +  𝛾0𝑗 + ∑ 𝛽𝑘𝑥𝑘𝑖𝑗

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

) ∙ 𝜆ℎ + 𝜖𝑖𝑗
(ℎ) (9) 

 𝛾0𝑗  ~ 𝑁(0, 𝜎𝛾0
2 ), 𝛾𝑚𝑗  ~ 𝑁(0, 𝜎𝛾𝑚

2 ), 𝜖𝑖𝑗
(ℎ)

 ~ 𝑁(0, 𝜎ℎ
2) (10) 

The above Bayesian latent variable model (i.e., Equations (9) and (10)), can be used for simultaneously 

modeling the effect of sound level on the two physiological wellbeing measures, SDNN and normalized-

HF. The factor loadings 𝜆ℎ automatically assigns different weights to each outcome (i.e., 𝜆1 and 𝜆2), thus 

overcoming the limitation in the existing univariate transformation-based modeling methods. The 

univariate transformation-based modeling method is a special case of latent variable modeling method, 
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where we set the factor loadings of all outcomes 𝜆ℎ  to 1 (Refer to section 2 of supplementary materials for 

model representation in univariate transformation-based modeling method).    

A corresponding latent variable model can be developed using a classical approach. In the classical 

approach, the outcomes can be considered as reflective measures for a latent construct, followed by fitting 

a two-level structural equation model (SEM) consisting of the input variables and the latent construct. 

Software such as Mplus, LISREL, EQS, lavaan, Mplus, OpenMx can fit two-level SEM with random 

intercepts (Skrondal and Rabe-Hesketh 2004). In the multilevel SEM model, each outcome 𝑦𝑖𝑗ℎ  is split into 

a within and a between component as follows: 

 𝑦𝑖𝑗 = (𝑦𝑖𝑗 −  𝑦𝑗̅) +  𝑦𝑗̅ = 𝑦𝑊 + 𝑦𝐵 (11) 

In Equation (11), both the within and between covariance components are treated as orthogonal and additive 

latent variables (Heck and Thomas 2015). The maximum likelihood estimate for parameters is derived by 

minimizing the overall loglikelihood which is the sum of likelihood of data from 𝐽 individuals. The latent 

variable model using the classical approach offers much lesser flexibility than its Bayesian counterpart, as 

it solicits more data-related assumptions and does not account for random effects of sound level (Heck and 

Thomas 2015; Kline 2012).      

5.3 Modeling individual heterogeneity effects   

Research question: What are the factors contributing to the individual heterogeneity in effect of sound level 

on wellbeing?  

5.3.1 Existing methods  

While it is of interest to understand the overall effect of an input on an outcome in a population, insights 

regarding how and why effects differ across individuals can be valuable (Abrams and Hens 2015; 

Dingemanse and Dochtermann 2013; Gimenez et al. 2018). The random-effects indicate the presence of 

individual heterogeneity in effects of an input on the outcome in a multilevel model (Raudenbush and Bryk 
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2002). A naïve approach to identify factors contributing to between-individual heterogeneity is to introduce 

each factor in an interaction term with the input variable and test its significance; an approach known as 

slopes-as-outcomes modeling (Becker et al. 2013; Raudenbush and Bryk 2002). However, this hypothesis 

testing-based approach is sensitive to noise in data, increases the chances of a Type II error (i.e., even if 

person-level factor contributes to individual heterogeneity, it is insignificant as a moderator in the model), 

and becomes cumbersome as the number of potential factors increases. There are no existing validated 

methods for the identification of factors contributing to individual heterogeneity in effects measured by 

random effects in multilevel models. There is a need for a new method to identify person-level factors 

associated with individual heterogeneity in effects of sound level on wellbeing.    

5.3.2 Varying-coefficients modeling method   

We propose the varying-coefficients modeling method as a two-step procedure: (a) Step1: Quantifying 

heterogeneity, and (b) Step 2: Identifying factors contributing to heterogeneity. The method can be used to 

identify person-level variables explaining the heterogeneity in effects of sound level on physiological 

wellbeing across individuals.  

In the first step, we fit a Bayesian hierarchical linear model with all input variables with varying 

coefficients having normal priors with non-zero means. Person-level variables (e.g., age, BMI, gender, etc.) 

are not included in the model as their value is constant for each individual (i.e., varying coefficients for 

person-level variables have distribution with zero variance). The hierarchical Bayesian linear model for in 

step 1 is given in Equations (12) and (13). 

 
𝑦ℎ𝑖𝑗 =  (𝛾0𝑗 + ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

) ∙  𝜆ℎ + 𝜖𝑖𝑗
(ℎ) (12) 

 𝛾0𝑗  ~ 𝑁(𝜇𝛾0
, 𝜎𝛾0

2 ), 𝛾𝑚𝑗  ~ 𝑁(𝜇𝛾𝑚
, 𝜎𝛾𝑚

2 ), 𝑚 ∈ ℤ𝑀 , 𝜖𝑖𝑗
(ℎ)

 ~ 𝑁(0, 𝜎ℎ
2) (13) 
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Note that the mean values 𝜇𝛾0
and 𝜇𝛾𝑚

in Equation (13) are analogous to the model intercept and the 

corresponding fixed effect coefficients of the 𝑚𝑡ℎ variable in the Bayesian latent variable model (i.e., 

Equations (9) and (10)).  

In the second step, we formulate the varying coefficients of sound level as an outcome of a linear model 

with person-level variables as the input variables as given in Equation (14). 

 
𝛾𝑟𝑗 = β0 + ∑ 𝛽𝑝𝑥𝑝𝑗

𝑃

𝑝=1

+ 𝜖𝑗 ,  𝜖𝑗  ~ 𝑁(0, 𝜎𝑟
2) (14) 

In Equation (14), Γr  = {𝛾𝑟1, 𝛾𝑟2, … , 𝛾𝑟𝐽} are the varying coefficients for sound level in the Bayesian 

hierarchical linear model in step 1. {𝑥1∙, 𝑥2∙, … , 𝑥𝑃∙} are 𝑃 person-level variables and 𝜖𝑗  is a normally 

distributed residual error varying across 𝐽 individuals.  

The problem of identifying person-level factors contributing to individual heterogeneity effects 

becomes a variable selection problem for the above linear model. Traditional stepwise feature selection 

methods for regression models are ridden with challenges such as sensitivity to changes in data and low 

external validity (Hastie et al. 2009). These challenges are particularly relevant in our problem where there 

are multiple person-level variables that could be factors contributing to heterogeneity in sound effects on 

wellbeing across individuals. We therefore choose three regularization based methods, lasso (Tibshirani 

1996), elasticnet (Zou and Hastie 2005) and adaptive lasso (Zou 2006) to determine significant inputs in 

the linear model. The elasticnet and adaptive lasso methods are improvements over the lasso feature 

selection method accounting for correlated features and possessing oracle properties respectively (Hastie et 

al. 2009). For each of these methods, the problem of feature selection is represented in the regularization 

modeling framework as an optimization problem, as argmin
𝛽

𝑓𝐿𝑜𝑠𝑠(𝛽) + 𝑓𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝛽). The loss function for 
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linear regression is the sum of squared errors given by  ∑ (𝑦𝑖  −  𝛽0 − ∑ 𝑥𝑖𝑝
𝑃
𝑝=1 𝛽𝑝)

2𝑛
𝑖=1  and the penalty 

function for regularized models is given in Equation  

 
𝑓𝐿𝑎𝑠𝑠𝑜−𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝛽) =  𝜆 ∑ |𝛽𝑝|

𝑃

𝑝=1

 (15) 

 
𝑓𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑛𝑒𝑡−𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝛽) =  𝜆[(1 − 𝛼) ∑|𝛽𝑝|

𝑃

𝑝=1

2

/2 + 𝛼 ∑ |𝛽𝑝|]

𝑃

𝑝=1

 (16) 

 
𝑓𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑙𝑎𝑠𝑠𝑜−𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝛽) = 𝜆 ∑ 𝑤𝑝|𝛽𝑃|

𝑃

𝑝=1

 (17) 

The hyperparameter 𝜆 and 𝛼 are determined using grid-search procedure (Hastie et al. 2009). The initial 

adaptive weights are set as 1

|𝛽𝑝
𝑂𝐿𝑆|

, or inversely proportional to the absolute values of naïve regression 

coefficients of inputs as proposed by Zou (2006). We choose the person-level variables that have non-zero 

coefficients in all three regularized models as the final set of factors contributing to individual heterogeneity 

effects. 

Table 2 summarizes existing and proposed methods for addressing the three challenges in sound-

wellbeing modeling.  

Table 2: Methods addressing challenges in sound-wellbeing modeling  

Existing/Proposed 
methods 

Modeling challenges 
Modeling curvilinear 

effects (using 
segmented models) 

Simultaneous modeling 
of multiple outcomes 

Modeling individual 
heterogeneity effects 

Existing methods 

• Heuristic approach 
(Kraus et al. 2013) 

• Maximum likelihood 
based method 
(Muggeo et al. 2014)  

• Classical approach – 
Univariate method 
(Baldwin et al. 2014) 
 

• Slopes-as-outcomes 
modeling method 
(Raudenbush and 
Bryk 2002) 

Proposed methods 

• Semi-automated 
change point 
determination 
method  

• Bayesian latent 
variable modeling 
method 

• Varying-coefficients 
modeling method  
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6. Analysis 

6.1 Data pre-processing 

A total of 248 office workers expressed interest in participating in our study (described in section 3), 

representing approximately 12% of the workers located in areas of the office buildings where recruitment 

took place. Pregnant women and those wearing pacemakers or insulin pumps were excluded. Participants 

taking medication known to affect cardiac activity were noted but not excluded. Due to scheduling 

problems, sickness and exclusionary criteria, 17 office workers did not participate, resulting in a total 

enrolment of 231 participants. Due to unexpected changes in work schedules, 8 of the 231 participants were 

only observed for two workdays, rather than the full 3 days.  

The heart rate variability measures SDNN and normalized-HF were calculated using cardiac activity 

measured by EcgMove3, according to the guidelines of the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology (Malik et al. 1996). Physical activity levels were 

assessed in mG from the EcgMove3’s triaxial accelerometer sensor (Razjouyan et al. 2018). Sound levels 

were aggregated at 5-minute intervals to be integrated with physiological wellbeing measures SDNN and 

normalized-HF, assuming no lagged effects (Srinivasan et al. 2017). Only observations with both outcome 

values present were considered in the analysis. Observations with outcome values above the 99.5 th 

percentile were discarded. Age and BMI were discretized to five and four levels respectively for ease of 

interpretation. Data of participants with less than one hour of recorded data were excluded from analysis. 

Missing values in input variables were imputed using mean values. Our final dataset contained 31,557 

observations aggregated at five-minute intervals and processing approximately 200,000 minutes of 

wearable data streams from the 231 participants. Apart from sound level as the input variable and SDNN 

and normalized-HF as the outcomes, person-level variables (e.g., age, gender, etc.), temporal indicators 

(time of day, day of the week) and physical activity levels were included as covariates in the statistical 

models. We used the entire dataset training the models for making inference. Observations from day 1 and 
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day 2 of participation of all participants were considered as the training dataset, and day 3 observations 

were used as the holdout sample (i.e., test dataset) for evaluating the predictive performance of models. 

Summary statistics of relevant intrapersonal variables (i.e., wearable device based repeated measures and 

temporal information) and interpersonal variables (i.e., person-level information) in this study are shown 

in Table 3. 

Table 3: Summary statistics of our data 

Variable Summary 
INTRAPERSONAL 

Numerical Mean SD Units % missing 
SDNN 53.08 23.33 ms - 
Normalized-HF 19.81 12.70 % - 
Sound level  51.85 8.79 dBA 4.29 
Physical activity level 0.1738 0.3164 G 0.07 

Categorical Category Hours:Mins Proportion % missing 
Time of Day 

   
0  

Morning 1224:10 45.76 
 

 
Afternoon 1039:30 38.85 

 
 

Evening 411:15 15.37 
 

Day of week  
  

0  
Monday 449:25 16.80 

 
 

Tuesday 860:50 32.18 
 

 
Wednesday 916:55 34.28 

 
 

Thursday 431:50 16.14 
 

 
Friday 15:45 0.59 

 

INTERPERSONAL 
Numerical Mean SD Units % missing 

Neuroticism 3.21 0.97 Scale 1-7 10.38 
Noise sensitivity 4.05 1.17 Scale 1-7 9.52 
Average Sound exposure 51.99 4.89 dBA 4.33 

Categorical Category No. of participants Proportion % missing 
Age  

   
9.95  

Less than 30 years 30 12.98 
 

 
30 - 39 years 62 26.83 

 
 

40 - 49 years 43 18.61 
 

 
50 - 59 years 56 24.24 
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60 years or above 17 7.36 

 

Gender 
   

12.12  
Male 88 38.09 

 
 

Female 115 49.78 
 

BMI 
   

10.39  
18.5 - 25 76 32.9 

 
 

25.1 - 30 81 35.06 
 

 
30.1 - 35 30 12.98 

 
 

Above 35.1  20 8.66 
 

Computer-dominant work  
  

8.66  
Yes 93 40.26 

 
 

No 118 51.08 
 

Management work  
  

8.66  
Yes 69 29.87 

 
 

No 142 61.47 
 

Technical work  
  

8.66  
Yes 90 38.96 

 
 

No 121 52.38 
 

Meeting heavy work  
  

8.66  
Yes 42 18.18 

 
 

No 169 73.16 
 

Sleep problems  
  

9.09  
Yes 42 18.18 

 
 

No 168 72.73 
 

High blood pressure  
  

9.09  
Yes 42 18.18 

 
 

No 168 72.73 
 

Anxiety 
   

9.09  
Yes 38 16.45 

 
 

No 172 74.46 
 

 

6.2 Modeling curvilinear effects of sound levels on physiological wellbeing  

We applied and evaluated our semi-automated method to determine the change points for fitting 

segmented multilevel models associating sound level with SDNN and normalized-HF as physiological 

wellbeing outcomes.  
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The first step of the semi-automated method is to fit a Generalized additive mixed model (GAMM) and 

visualize its sound level component smooth function. The component smooth functions of sound level on 

the outcomes, SDNN and normalized-HF are shown in Figure 2(a) and Figure 2(b) respectively. Smooth 

functions in both models were observed to be curvilinear with a single maximum across the range of sound 

level in the dataset.  

Figure 2.  Component smooth function of sound level in GAMM for (a) SDNN as outcome and 
(b) Normalized-HF as outcome 

The second step of the semi-automated method is to perform a linear search for change points using 

optimization with box constraints. For models corresponding to outcomes SDNN and normalized-HF, we 

chose starting values of 55 dBA and 45 dBA across search ranges [40, 60] and [30, 50] respectively for 

running linear search of change points. Brent’s optimization algorithm with box constraints (Brent 2013) 

was used as the linear search method. We identified 51 dBA and 39 dBA as change points for two models 

with SDNN and normalized-HF as outcomes respectively. Finally, we fitted segmented multilevel 

regression models using these change points over the training data. Fixed-effects coefficients of sound level 

segments in models with outcomes SDNN and normalized-HF are as shown in Table 4. 

 
(a) 

 
(b) 
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Table 4. Fixed-effects coefficients of sound level in segmented multilevel models 

Outcome Segment Coefficient (SE)  

SDNN 
Sound level < 51 dBA  0.1425 (0.06)** 
Sound level ≥ 51 dBA -0.0682 (0.03) ** 

Normalized-HF 
Sound level < 39 dBA  Insignificant 
Sound level ≥ 39 dBA -0.0998 (0.02)*** 

** = p < .05, *** = p < .01 

We tested the robustness of the change point estimates by varying search ranges and starting points 

around the maxima identified in previous step and got estimates within +/- 1 dBA tolerance of the previous 

estimates. Further, we found that other sophisticated optimization algorithms such as BFGS and L-BFGS 

(Fletcher 2013) gave similar estimates for change points. We compared the performance of the segmented 

multilevel model with change points determined using our proposed method with the performance of 

multilevel models with: (a) Sound level as linear input (b) Sound level as curvilinear input (i.e., first order 

and second order effects) (c) Sound level segmented using the maximum likelihood approach (Muggeo et 

al. 2014), and (d) Sound level segmented using ad-hoc approach (Kraus et al. 2013).  Using the maximum 

likelihood method (Muggeo et al. 2014), the change points determined for sound level were 53 dBA and 

76 dBA for models with SDNN and normalized HF as outcomes respectively. For the ad-hoc method, we 

inspect the component smooth curves of the GAMM models and set the change points as 55 dBA and 45 

dBA for models with SDNN and normalized HF as outcomes respectively. The fixed effects model was 

used as a baseline, denoting the performance when only fixed effects of sound level are considered in the 

multilevel model. Sound level was included in fixed as well as random effects components of other models. 

Model fit was checked using pseudo R-Squared (Nakagawa and Schielzeth 2013). Predictive performance 

was compared using Root Mean Squared error (RMSE) and Mean Absolute Prediction Error (MAPE) on 

the test dataset. The model fit and prediction accuracy comparisons across models described in previous 

section are shown in Table 5. The model fit and error estimates for best performing models are highlighted 

for reader convenience. Better model fit, and predictive performance corresponds to a higher value of R-

squared and lower error values. The models with segmented inputs perform better than models with linear 
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inputs (Table 5), but equivalent to models with curvilinear inputs in terms of fit and predictive performance. 

Table 5 shows that segmented models with change points determined using our method are better than 

segmented models with change points using inspection alone (ad-hoc method) or using the maximum 

likelihood method.  

Table 5. Model fit and predictive performance comparison of segmented multilevel models  

Model 

SDNN Normalized-HF 

R-sq. RMSE 

(ms) 

MAPE 

(%) 

R-sq. 

 

RMSE 

(ms) 

MAPE 

(%) 

Fixed effects only (baseline) 0.5098 17.84 26.19 0.5026 9.17 46.12 
Linear inputs 0.5555 17.44 25.18 0.5202 9.08 44.71 
Curvilinear inputs 0.5815 17.21 24.73 0.5329 8.97 44.17 
Segmented inputs using ad-
hoc method (Kraus et al. 
2013) 

0.5832 17.21 24.71 0.5316 8.97 44.19 

Segmented inputs using 
Maximum Likelihood method 
(Muggeo et al. 2014) 

0.5837 17.20 24.71 0.5319 8.98 44.18 

Segmented inputs using our 
semi-automated method 0.5838 17.20 24.69 0.5323 8.96 44.18 

The fixed effects coefficient of sound level in the linear, curvilinear and segmented model are visually 

represented in Figure 3. Figure 3 shows that segmented models represent the curvilinear relationship better 

than a linear model and are easier to interpret than the curvilinear model in terms of unit change in outcome 

as a function of unit change in the sound level.  
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Figure 3.  Trajectory of linear, curvilinear and segmented fixed-effects coefficients for (a) SDNN as 
outcome, and (b) Normalized-HF as outcome 

6.3 Simultaneous modeling the effects of sound level on SDNN and normalized-HF   

We evaluated and applied the Bayesian latent variable modeling method for simultaneous modeling 

effects of sound level on SDNN and normalized-HF. In the model, fixed-effects were introduced for 

variables sound level, physical activity level, time of day, day of week, age group, BMI group and gender, 

and random-effects were introduced for variables sound level and physical activity level. We repeated the 

change point determination procedure for segmented multilevel models to get a single optimal sound level 

for outcomes SDNN and normalized-HF. The component smooth function for the GAMM model for Sound 

level is shown in Figure 4. We selected starting values of 45 dBA and search range [40, 60] for running 

linear search of change point and identified 50 dBA as an optimal change point for the segmented regression 

dual-outcome model. We used the classical univariate transformation method for simultaneous modeling 

of outcomes in the change point determination procedure since the linear search procedure with Bayesian 

variable modeling method took more than a day to converge.  

 
(a) 

 
(b) 
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Figure 4.  Component smooth function of sound level in GAMM for physiological wellbeing as a 

bivariate function of SDNN and Normalized-HF  

We standardized the input (Sound level) as well as the outcomes (SDNN and normalized-HF) to remove 

sensitivity and challenges in posterior estimation convergence due to scale differences in the units. For 

models fit using the Bayesian approach, parameters were assigned a diffused Normal prior and the error 

variances were assigned a diffused half-Cauchy prior (Gelman and Hill 2007). The Hamiltonian Monte 

Carlo algorithm was used for sampling four parallel chains (Carpenter et al. 2017). The R-hat statistic cutoff 

< 1.1 and zero divergence check were used as validation tests for posterior estimates of parameters and 

assessing quality of fit (Carpenter et al. 2017). 

The mean posterior distribution estimates and the 90% credible intervals (values between 5th and 95th 

percentile of the posterior distribution) of the fixed effects coefficients for models fitted using the Bayesian 

latent variable modeling method is given in Table 6. The posterior estimates of the fixed-effects of Sound 

level, Time of day, Day of week, Physical activity level, Age and BMI indicate that they are interpersonal 

and intrapersonal factors related to an individual’s physiological wellbeing at workplace. The trace plots of 

four chains of MCMC draws for the coefficient of Sound level for the two conditions, Sound level < 50 

dBA and Sound level >= 50 dBA are shown in Figure 5, indicating good convergence. Posterior estimates 

of all the parameters in the model (fixed-effects as well as varying effects) had R-hat values less than 1.1, 

and the model convergence report indicated zero divergence check, indicating an acceptable model fit.    
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Table 6 – Fixed effects of models using different simultaneous outcomes modeling methods   

Coefficients Posterior estimate (mean) 90% Credible interval  
Sound levelNormalized (< 50 dBA) 0.0471 (0.0199 – 0.0648) 

Sound levelNormalized (>= 50 dBA) -0.0167 (-0.0337 – -0.0042)  
Physical activity levelNormalized 0.2756 (0.2316 – 0.2932) 

Time of day – Morning  Baseline  
Time of day – Afternoon  -0.1479 (-0.1675 – -0.1277) 
Time of day – Evening  -0.0939 (-0.1206 – -0.0690) 
Day of week – Monday Baseline  
Day of week – Tuesday -0.1301 (-0.2670 – 0.0092) 

Day of week – Wednesday -0.0571 (-0.0888 – -0.0108) 
Day of week – Thursday -0.0588 (-0.0886 – -0.0287) 

Day of week –Friday -0.0430 (-0.0836 – 0.0277) 
Age group – Below 30 Baseline  

Age group – 30-40 0.1361 (-0.1439 – 0.4115) 
Age group – 40-50 -0.1468 (-0.4495 – 0.1641) 
Age group – 50-60 -0.3119 (-0.6235 – -0.0038) 

Age group – Above 60 -0.4413 (-0.7475 – -0.0132) 
BMI group – Below 25 Baseline  

BMI group – 25-30 -0.2278 (-0.4281 – -0.0165) 
BMI group – 30-35 -0.3619 (-0.6751 – -0.0896) 

BMI group – Above 35 -0.6169 (-0.9768 – -0.2363) 
Gender – Male Baseline  

Gender – Female -0.0439 (-0.2278 – 0.1435) 
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(a) 

 
(b) 

Figure 5: MCMC trace plots for coefficient of sound levels in following Bayesian latent variable model 
for: (a) Sound levels < 50 dBA, and (b) Sound levels >= 50 dBA. 

 
The fixed effect of sound level in the Bayesian latent variable model represents the global effects of 

sound on individual wellbeing after accounting for individual heterogeneity effects through the varying 

effects coefficients. The coefficient for sound level in Table 6 indicates change in physiological wellbeing 

by a standard deviation (SD) related to a unit standard deviation (SD) change in sound level as both input 

and outcomes are standardized. Knowing that 68.3% of variability is explained by 1 SD of a normal 

distribution and the SD of Sound level in the dataset is 8.79 dBA (refer to Table 3), we can make the 

following inferences. For sound amplitudes lower than 50 dBA, a 10 dBA increase in sound level is related 

to a 3.6% increase in physiological wellbeing. For sound amplitudes higher than 50 dBA, a 10 dBA increase 

in sound level is related to decrease in physiological wellbeing by 1.3%.  
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We compared the predictive performance of the Bayesian latent variable modeling method with the 

following three alternative methods for simultaneous modeling of multiple outcomes: (a) the classical 

univariate transformation method (Baldwin et al. 2014), (b) the univariate transformation method trained 

using a Bayesian approach, and (c) the classical multilevel structural equation modeling method (Kline 

2011). Models using the classical approach are trained using the R packages lavaan (Rosseel 2012), nlme 

(Pinheiro et al. 2007) in a 16 GB RAM, 2.7 GHz processor PC, whereas models using the Bayesian 

approach are written and executed using Stan program through the RStan interface (Carpenter et al. 2017), 

in a high performance computer cluster with 28 nodes (192 GB RAM per node, Intel Haswell V3 28 core 

processors). The RMSE and MAPE of the models trained using the four methods are given in Table 7.  

Table 7: Comparing predictive performance of methods for simultaneous modeling of multiple outcomes  

Model 
SDNN Normalized HF 

RMSE MAPE RMSE MAPE 

Classical 
Univariate 20.12 34.13 10.98 54.36 

Latent 23.71 44.78 11.22 57.10 

Bayesian 
Univariate 21.50 37.39 10.04 52.64 

Latent 17.06 26.56 8.90 44.36 

Table 7 shows that the model trained using the Bayesian latent variable modeling method has the lowest 

prediction errors RMSE and MAPE, indicating that our method is superior to other methods for 

simultaneous modeling of multiple outcomes. 

6.4 Individual heterogeneity in effects of sound level on physiological wellbeing  

The heterogeneity in the effect of sound level on physiological wellbeing across individuals is 

accounted for by the varying coefficients of sound level input in the Bayesian latent variable model. Figure 

6 shows a caterpillar plot visualization of posterior estimates of varying coefficients of sound level and their 

60% credible interval (values between 20th percentile and 80th percentile of the posterior distribution) in the 

Bayesian latent variable model. The spread of mean values of posterior estimates of the varying coefficients 

indicate substantial individual heterogeneity effects. We applied the varying-coefficients method to identify 
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person-level variables contributing to individual heterogeneity in sound level effects on physiological 

wellbeing.  

 
(a) 

 
(b) 

Figure 6: Caterpillar plots of posterior estimates of varying coefficients of sound level and their 60% 
credible interval in the Bayesian latent variable model for (a) Sound level < 50 dBA, and (b) Sound level 

>= 50 dBA. The vertical lines show the corresponding fixed effects coefficients of sound level. 

We considered two subsets of the data, one with sound levels less than 50 dBA and other with sound 

levels greater than or equal to 50 dBA to fit two independent models. By fitting two independent models 

for instances with high sound levels (>= 50dbA) and instances with low sound levels (< 50 dBA), we were 

able to make independent inferences about individual heterogeneity effects for each scenario. 

The varying-coefficients modeling method uses a two-step procedure for modeling heterogeneity 

effects and for identifying factors contributing to the heterogeneity effects. We fitted a Bayesian 

hierarchical model with input variables Sound level, Physical activity level, Time of day, and Day of week 

as variables with varying coefficients with normal prior having non-zero means. In step 2, we used lasso, 

elasticnet and adaptive-lasso regularized models to identify person-level variables that have a significant 

relation with the varying coefficients of Sound level. The coefficients for the regularized feature selection 

models are shown in Table 8.  



SOUND-WELLBEING MODELING USING WEARABLES  
 

 33 

Table 8: Coefficients of person-level input variables in regularized models in varying coefficients 
modeling method 

Predictors Below 50 dBA Above 50 dBA  
Lasso Elastic-

net 
Adaptive 

lasso 
Lasso Elastic-

net 
Adaptive 

lasso 
Neuroticism 

      

Noise sensitivity 
      

Age group - Below 30 baseline baseline baseline baseline baseline baseline 
Age group - 30-40 

   
-0.0011 -0.0076 -0.0002 

Age group - 40-50 
      

Age group - 50-60 -0.0026 -0.0141 -0.0003 
   

Age group - Above 60 -0.0047 -0.0224 -0.0007 0.0084 0.0160 0.0010 
BMI group - Below 25 baseline Baseline baseline baseline baseline baseline 
BMI group - 25-30 -0.0009 -0.0044 -0.0001 

 
0.0004 

 

BMI group - 30-35 
   

-0.0001 -0.0096 
 

BMI group - Above 35 
   

0.0076 0.0123 0.0011 
HighBP - Yes -0.0133 -0.0764 -0.0021 -0.0207 -0.0203 -0.0042 
Anxiety - Yes -0.0015 -0.0013 -0.0002 0.0060 0.0148 0.0007 
Sleep problems - Yes 

      

Computer use intensive 
work - Yes 

0.0187 0.0881 0.0036 
   

Managerial work - Yes 
      

Meeting intensive work – 
Yes 

      

Technical work - Yes 
      

Average Sound exposure   
      

 

Table 8 shows that Age groups, BMI groups, High BP, Anxiety, Computer use intensive worktype are 

the person level factors that are related to the variability in coefficients of sound level in the physiological 

wellbeing models. The blank cells show that coefficients of corresponding variables have been shrunk to 

zero in the corresponding feature selection method (i.e., lasso, adaptive lasso, elastic net). To evaluate the 

performance of the varying coefficient modeling method, we compared the predictive performance of 

multilevel models with three set of input variables: (a) inputs including no person-level variables as 

moderators, (b) inputs including all person-level variables as moderators, and (c) inputs including person-

level variables identified by varying-coefficients modeling method as moderators. Moderators were 
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included as two-way interactions with fixed effect of sound level in the multilevel models. Table 9 shows 

the prediction errors of all three models with respect to outcomes SDNN and normalized HF (Univariate 

outcomes were reconstructed using latent factor estimated in Bayesian latent variable modeling method). 

Table 9 shows that the model including the person-level variables identified using the varying-coefficients 

modeling method as moderators have least RMSE and MAPE as compared to other models.   

Table 9: Performance comparison of multilevel models with different set of moderators 

Moderators of sound level in multilevel model   SDNN Normalized HF 
RMSE MAPE RMSE MAPE 

No moderators  17.06 26.56 8.90 44.36 
All person-level variables  19.66 31.38 11.13 47.73 

Person-level variables identified by varying-coefficients 
modeling method  

16.65 24.97 8.41 43.23 

High BP and Computer use intensive worktype are person level factors that contribute most to the 

between-individual heterogeniety in sound level effects on physiological wellbeing (see Table 8). Figure 

7(a) and Figure 7(b) are plots showing the change in outcome due to introducing interaction effects of High 

BP and Computer use intensive worktype variables with sound level fixed effects in multilevel model 

respectively. The fixed-effect coefficient of Sound level in multilevel models with stratified datasets 

participants belonging to categories Normal BP, High BP, Computer use intensive worktype, and Not 

computer use intensive worktype are given in Table 10.      

 
(a) 

 
(b) 

Figure 7: Interaction plots of the top two person-level variables moderating the sound-wellbeing 
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relationship 
 

Figure 7(a) and Table 10 show that office-workers with blood pressure are more negatively affected 

than participants with normal blood pressure. Figure 7(b) and Table 10 show that office-workers involved 

in computer intensive work have higher positive effects of sound levels on physiological wellbeing at 

amplitudes less than 50 dBA, but have higher negative effects of sound levels on physiological wellbeing 

at amplitudes more than 50 dBA, as compared to office-workers involved in work that is not computer use 

intensive.     

Table 10: Coefficients of sound level in stratified datasets 

Stratification 
Standardized coefficients of Sound level 

Less than 50 dBA Greater than 50 dBA 
Blood 

pressure 
Normal BP 0.0232 -0.0239 

High BP -0.0181 -0.0665 
Type of  
work 

Not computer use intensive 0.0092 -0.0211 
Computer use intensive 0.0165 -0.0461 

 
 

6.5 Empirical evidence 

In order to further validate the presence of optimal Sound level for physiological wellbeing at 50 dBA 

and the influence of blood pressure and work involving intensive computer use in moderating the sound-

wellbeing relationship, we conduct post-hoc comparison of wellbeing across different stratified populations 

for three sound level conditions (i.e., Sound level is lesser than 45 dBA, Sound level is between 45 dBA 

and 55 dBA and Sound level is greater than 55 dBA). Table 11 shows the post-hoc comparisons of mean 

wellbeing score adjusted for random effects for three sound level ranges for different sub-populations in 

our data. In support of our finding that 50 dBA is an optimal sound level at workplace, we find that Sound 

level range 45-55 dBA has the highest mean adjusted wellbeing score across the complete population, when 

compared to low and high sound level ranges. But for individuals with High blood pressure, the lowest 

sound level range (i.e., Sound level <= 45 dBA) is optimal, unlike individuals with normal blood pressure. 

Finally, individuals with computer use intensive work have a lower mean adjusted wellbeing score for low 

as well as high Sound level ranges (i.e., Sound level <=45 dBA and Sound level > 55 dBA), when compared 
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to individuals with regular computer use at work. These empirical findings are concurrent with person-level 

moderator pattern identified and characterized using our varying co-efficient modeling method for 

modeling individual heterogeneity effects.        

Table 11: Post-hoc group comparisons across sound level ranges 

Sub-population 
Mean adjusted wellbeing score†† 

Sound <= 45 dBA 45 dBA < Sound <= 
55 dBA 

Sound > 55 
dBA 

Complete dataset 0.0054 0.0174 -0.0203 
High BP† -0.1395 -0.1600 -0.1884 
Normal BP 0.0120 0.0302 -0.0081 
Intensive computer use  -0.0407 -0.0186 -0.0985 
Regular computer use 0.0229 0.0333 0.0144 
† Repeated measures MANOVA shows significant differences across sound level ranges for each sub-
population except high BP 
†† Mean value of wellbeing is adjusted for random effects using estimated marginal means procedure 
(Searle 1980)  

 

7. Discussion 

In this study, we introduced a novel study design using wearable devices and proposed three new 

statistical modeling methods to determine the effects of workplace sound level on an individual’s 

physiological wellbeing. Traditional study methodologies such as controlled experiments and survey-based 

methods are not suitable for sound-wellbeing modeling as the real office environment ecosystem is more 

complex than simulated environments with a limited set of treatments and controls. We overcome the above 

challenge of low external validity by using wearable sensors to collect continuous measurements of 

environmental and physiological conditions of multiple persons simultaneously. We conducted a 

preliminary analysis of the collected data and discovered that sound level has a curvilinear effect on two 

physiological wellbeing measures (i.e., SDNN and Normalized-HF), and this effect varies across 

individuals. We proposed three new methods for addressing the gap in statistical modeling methods for 

representing curvilinear effects, simultaneous modeling of multiple outcomes, and identifying factors 

contributing to individual heterogeneity in order to model the sound-wellbeing relationship.   
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Our methods can be naturally extended to other similar studies employing multiple wearable sensors 

and multiple participants. We propose the following guidelines for applying the statistical modeling 

methods to future applications: 

Modeling curvilinear relationships: We have focused on the problem of identification of change points 

for input variables to be segmented, assuming that a curvilinear relationship has already been ascertained 

in advance. Curvilinear relationships can be based on prior literature or hypothesized through theoretical 

deductions. It can be explored using scatter plot visualizations and validated using second-order coefficients 

in models. If curvilinear effects are absent, the segmented modeling approach should be avoided to prevent 

over-fitting. The proposed semi-automated method for change point determination in segmented modeling 

of the curvilinear sound-wellbeing relationship requires manual inspection and supply of initial values to 

optimization algorithms. In future applications with multiple inputs and multiple distinctive extrema 

observed in GAMM smooth functions, a linear search procedure for each change point can be tedious. A 

few ways to avoid this problem are – making variable transformations, treating extreme values and 

discretizing inputs.  

Simultaneous modeling of multiple outcomes: The Bayesian latent variable modeling method is 

suitable for simultaneous modeling of outcomes belonging to the same family of distributions but cannot 

handle outcomes from different families of distributions in its current formulation. For example, our method 

cannot a combination of discrete and continuous outcomes. An interim solution to this problem will be to 

carry out transformations of outcomes (e.g., Box-Cox, log-linear, quantization, etc.) to convert them into a 

singular family of distributions. Future studies can extend the Bayesian latent variable modeling method to 

implicitly handle mixed-type of outcomes.  

Modeling individual heterogeneity effects: The varying-coefficient modeling method identifies person 

level factors contributing to between individual heterogeneity in effects, given that there is sufficient 

person-level information available in data. Therefore, one should collect as much person-level information 
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as possible, since our method works better with more variables available for feature selection step using the 

three regularized models. Secondly, for the varying-coefficients model in our application, we have assumed 

that SDNN and normalized-HF can be represented using a single latent variable. In future applications, 

there can be theoretical justification to model multiple outcomes simultaneously through two or more latent 

variable constructs. Future studies can extend our method using parameter expansion (Merkle and Wang 

2016) or other suitable approaches for conceptualizing multiple latent variables in the hierarchical Bayesian 

modeling paradigm. 

We have developed statistical modeling methods by assuming a two-level structure, with variables 

varying at within-individual (level-1) and for variables varying at individual level (level-2) in the data. But 

our methods can be applied to data with more than two levels of grouping structures without loss of 

generality. Ours is the first study that attempts to model individual heterogeneity effects and therefore we 

need future research to validate its application in other problem domains with individual heterogeneity 

effects. Even though curvilinear effects, multiple outcomes and individual heterogeneity effects have been 

presented in the context of sound-wellbeing modeling, they are modeling challenges encountered in a wider 

set of applications employing multilevel models. Our proposed methods can be used for applications such 

as patient monitoring systems, military fitness management programs, smart diet applications, etc. which 

have multilevel streaming data.  

Relevance to IS: 

IT artifacts are broadly defined as constructs (vocabulary and symbols), models (abstractions and 

representations), methods (algorithms and practices), and instantiations (implemented and prototype 

systems) (Hevner et al. 2004). In this study, we introduce the problem of determining the effects of 

workplace sound level on wellbeing of physiological wellbeing of office workers and introduce three new 

methods for modeling the sound-wellbeing relationship. Our major contributions include introduction of a 

unique study design using wearable devices for analyzing a complex relationship, new quantitative methods 
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for modeling digital data generated by wearables and informing workplace planning policies and practices 

that affect the health and wellbeing of office workers worldwide.  

Predictive modeling and statistical modeling in analytics go side-by-side as one predicts the future 

using existing data, focusing on informing us on the question “What will be”, while the other explicates 

hidden patterns and tells us about “What is” with respect to a phenomenon. Both of them are important for 

creating value out of data generated from digital sources such as wearable devices. As the number of 

wearable technology-based applications increases in future, the quantum of available data to analyze will 

exponentially increase and warrant for more and more advancements in statistical modeling for meaningful 

interpretations of patterns. Our method contributions in statistical modeling of wearables generated data are 

timely in IS research, as the discipline is widening its scope in design science using novel data sources 

including wearable devices. Wearable data analytics is a promising area that solicits attention from IS 

researchers owing to the ubiquitous nature of wearables in today’s lifestyle, and the promise of wearables 

to generate rich, personalized, temporal and highly-grained information content. In future, IS research 

employing wearable technology may encounter other challenges related to cost of sensors, ethical 

constraints on human research, participant privacy concerns, etc.  

Study limitations: 

Our study has a few limitations. In this study, we have focused on modeling the effects of workplace 

sound level on physiological wellbeing of office workers, but we have not collected information about the 

sound types (e.g., conversation, mechanical background noise, etc.) and frequencies (e.g., low, speech, 

high-tone, etc.) due to individual privacy concerns and sensor technology limitations. Since sound type and 

sound frequency do not moderate the effects of sound level on physiological wellbeing outcomes (Sun Sim 

et al. 2015; Walker et al. 2016), we believe our findings will still hold when controlling for the type and 

frequency of ambient sounds. Future studies can focus on effects of sound type and sound frequency and 

use our study design and modeling methods. Secondly, we have aggregated the sound level and other within 
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individual variables at 5-minute intervals to match the grain of short-term physiological wellbeing measures 

SDNN and normalized-HF; since the latter cannot be determined meaningfully for grains finer than 5 

minutes. Therefore, the lasting effects of spikes in sound level due to sudden events (e.g., shrieking sound, 

breaking glass, etc.) have not been investigated. However, effects of events repeated multiple times as well 

as background noises consistent across the 5-minute interval are accounted for, in our models. The Bayesian 

approach for simultaneous modeling of outcomes and modeling heterogeneity effects leads to better 

performance when compared to the classical (i.e., frequentist) approaches, at the cost of computing power 

and time. Posterior estimation of parameters in Bayesian models take much more time than estimation of 

coefficients in classical models. This limitation can be partially overcome by using parallel processing and 

high-performance computing clusters to estimate parameters of the Bayesian models.    

8. Conclusion 

The majority of the working population in today’s world spend a significant part of their active hours 

in closed office workspaces. Research shows that not only our work and social interactions at workplace, 

but also the workplace environment has an impact on our social, psychological, and physiological 

wellbeing. Among all the indoor environment quality factors, the ambient sound level is reported to be one 

of the highest stressors at the workplace in US. We conducted a field study using wearable devices where 

participants carried out their day-to-day activities while wearing sensors that continuously recorded their 

physiological wellbeing state and ambient sound level. We fitted multilevel regression models to the 

resultant data and observed evidences of a relationship between sound level and two physiological 

wellbeing measures (i.e., SDNN, normalized-HF). To better understand the mechanism of the sound-

wellbeing relationship, we have proposed three new statistical modeling methods for representing 

curvilinear effects, simultaneous modeling of multiple outcomes, and identifying factors contributing to 

individual heterogeneity effects. Our methods have better predictive performance than existing methods for 

each of the three modeling problems. Using our methods, we infer that an individual’s physiological 
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wellbeing is optimal when sound level in the workplace is 50 dBA. For sound amplitudes lower than 50 

dBA, a 10 dBA increase in sound level is related to a 3.6% increase in physiological wellbeing; whereas 

for amplitude above 50 dBA, a 10 dBA increase in sound level is related to decrease in physiological 

wellbeing by 1.3%. Age, body-mass-index, high blood pressure, anxiety and computer use intensive work 

are person level factors contributing to heterogeneity in sound level effects on physiological wellbeing 

across our study population. Our modeling method shows that workers with higher blood pressure are more 

negatively affected by increase in sound levels while workers with computer intensive work are more 

negatively affected by sound level extremities (i.e., quietude and loud noise). Our study informs policies 

and practices for designing workplaces with optimal sound levels in general and customized for certain 

subsets of the office worker population. It contributes to statistical modeling in wearable data analytics to 

facilitate the advancement of IS in BI&A 3.0 through meaningful use of sensor-based content.  

Moving forward, we plan to extend our analysis to determine the effects of other indoor environment 

quality factors including temperature, CO2, relative humidity and light intensity on physiological wellbeing 

of office workers. We also plan to validate our findings using additional (causal) experiments for specific 

target groups and discrete values of sound levels. Finally, we plan to investigate other factors contributing 

to the heterogeneity in sound level effects on physiological wellbeing such as extent of social interaction 

interactions between office-workers and average sound level exposure during leisure time.       
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Supplementary materials 
 

1.   Multilevel model inference using Classical and Bayesian approaches  

Multilevel or hierarchical levels of grouped data are a commonly occurring phenomenon (Raudenbush and 

Bryk 2002). For example, in organizational studies, information about firms as well as workers are available 

such that there exists a hierarchical structured data of individual workers nested within multiple firms. 

Multilevel models (also called as hierarchical linear models, random coefficients models, mixed-effects 

models) are statistical models with parameters that capture variability across multiple levels of data.  

In the classical or frequentist approach, multilevel models can be considered as an extension of ordinary 

least squares (OLS) regression model that is used to analyze variance in the outcome variables when the 

predictor variables are at varying hierarchical levels. A two-level hierarchical linear model can be 

mathematically expressed as follows: 

 Level 1:  𝑌𝑖𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑘𝑗𝑉𝑘𝑖𝑗  𝐾
𝑘=1 + 𝑟𝑖𝑗  (18) 

 Level 2:  𝛽𝑘𝑗 = 𝛾𝑘0 + ∑ 𝛾𝑘𝑚𝑊𝑚𝑗  𝑀
𝑚=1 + 𝑢𝑘𝑗  (19) 

Where 𝑌𝑖𝑗 is the outcome, 𝛽𝑘𝑗are the level-1 coefficients, 𝑉𝑘𝑖𝑗 are level-1 input variables, 𝑟𝑖𝑗 are level-1 

residuals, 𝛾𝑘𝑚 are level-2 coefficients, 𝑊𝑚𝑗 are level-2 input variables and 𝑢𝑘𝑗  are level-2 variables for 

𝑖𝑡ℎobservation of 𝑗𝑡ℎindividual for 𝑘 ∈ ℤ𝐾 and 𝑚 ∈ ℤ𝑀. The assumptions for the model are as follows:  

 𝐸(𝑟𝑖𝑗) = 0; 𝑣𝑎𝑟(𝑟𝑖𝑗) = 𝜎2; 𝐸(𝑢𝑘𝑗) = 0; 𝑐𝑜𝑣(𝑢𝑘𝑗 , 𝑟𝑖𝑗) = 0 ∀𝑖, 𝑗, 𝑘;  [
𝑢11 …
… 𝑢𝑘𝑗

] = 𝑇 (20) 

Where 𝑇 is the level-2 variance covariance component that model the inter-relationship between level-2 

errors. Combining equations (1) and (2), we can represent hierarchical linear models as follows: 

 
𝑦𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + ∑ 𝛽𝑘𝑥𝑘𝑖𝑗

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧𝑚𝑖𝑗

𝑀

𝑚=1

+ 𝜖𝑖𝑗  

 

(21) 
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Where β = {𝛽0, 𝛽1, … , 𝛽𝐾} are fixed effects coefficients, γ = {𝛾0𝑗 , 𝛾1𝑗 , … , 𝛾𝑀𝑗}  are random-effects 

coefficients for 𝐽 groups 𝑗 ∈ ℤ𝐽 and 𝜖𝑖𝑗  is the sum of fixed-effects error and random-effects error 

components. In matrix notation, the above equation is represented as follows: 

 𝑌 = 𝛼 + 𝑋𝛽 + 𝑍𝛾 + 𝜖 (22) 

Where 𝑋 is a matrix of fixed effects and 𝑍 is a matrix of random effects. Conditional to the above 

assumptions, the parameters in the model can be estimation by maximizing the likelihood function y as 

shown below: 

 𝑦 ~ 𝑁(𝛼 + 𝑋𝛽, 𝜎2𝐼 + 𝑍′𝑇𝑍) (23) 

The significance of the fixed effects and random effects are tested using Wald test, Likelihood Ratio Test, 

F-test, parametric bootstrap or MCMC methods (Raudenbush and Bryk 2002). Model fit can be compared 

using AIC, deviance and R-squared approximations (Nakagawa and Schielzeth 2013).  

Bayesians on the other in-hand describe their beliefs about the unknows in a hierarchical linear model 

before observing data with prior distributions and the following likelihood function:  

 𝑦 ~ 𝑁(𝛼 + 𝑋𝛽 + 𝑍𝑏, 𝜎2𝐼) (24) 

A single level regression disregards between-group heterogeneity is called model with complete pooling 

and can yield parameter estimates that are wrong if there is between-group heterogeneity. On the other 

hand, regression models for each group of the level-2 data independently is called modeling with no pooling 

and results imprecise parameter estimates as it ignores common variance across groups. Hierarchical linear 

models are considered as a subset of Hierarchical Bayesian models that are models with partial pooling 

(Gelman and Hill 2007). Parameters are allowed to vary by group at lower levels of the hierarchy while 

estimating common parameters at higher levels. Note that the level-2 and higher effects are not part of the 

error variance as in the classical/frequentist approach but modeled as parameters themselves (also called 

varying coefficients). The varying parameters have hyper-parameters that are estimated based on level-2 
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and higher order grouping in the data. The estimated posterior distribution of parameters for a hierarchical 

linear model with normally distributed error and identity link function has the following form: 

 𝑝(𝛼, 𝛽, 𝛾, 𝜎𝑌 , 𝜎𝛾|𝑌, 𝑋, 𝑍, 𝑈)  ∝ (25) 

∏ ∏ 𝑁(𝑌| 
𝑛𝑗

𝑖=1

𝐽

𝑗=1

 𝛽0 + 𝛾0𝑗 + 𝛽𝑋 + 𝛾𝑗𝑍, 𝜎𝑌
2) ∏ 𝑁(𝛾0𝑗 , 𝛾𝑗|𝛼0 + 𝛼𝑈,

𝐽

𝑗=1 
 𝜎𝛾

2) 

MCMC estimation approaches such as Metropolis Hastings, Gibbs Sampling, Hamiltonian Monte Carlo 

families of methods are used to estimate the posterior probability given the prior distribution of all 

parameters and likelihood of given data (Gelman et al. 2014). Comparison of implementations and general 

purpose software packages for classical and Bayesian multilevel modeling is done in West and Galecki 

2011 (West and Galecki 2011), Mai and Zhang 2018 (Mai and Zhang 2018) respectively.  
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2. Univariate transformation-based modeling method 

In the univariate transformation-based modeling method, we first convert the data into a long format as 

shown in Figure 8. 

 
 

  

 
Figure 8: Converting data in wide format to long format for univariate representation of multivariate 

outcomes 

Equation resembles the equation for multilevel model for univariate outcome, except that each variable is 

subscripted with ℎ which indicates the value for the ℎ𝑡ℎ  outcome.  

 
𝑦ℎ𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + ∑ 𝛽𝑘𝑥ℎ𝑘𝑖𝑗

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧ℎ𝑚𝑖𝑗

𝑀

𝑚=1

+ 𝜖𝑖𝑗
(ℎ) (26) 

Here, residual errors 𝜖𝑖𝑗
(ℎ) are defined as 𝑁(0, 𝜎ℎ

2) with estimated independent error variances for each 

outcome ℎ. Marginal contributions of any outcome on input variables can be derived by including an 

indicator function in an interaction effect. For example, to derive marginal effects of level-1 variables, 

model is shown as follows: 

 
𝑦ℎ𝑖𝑗 = 𝛽0 + 𝛾0𝑗 + ∑ 𝛽𝑘𝑥ℎ𝑘𝑖𝑗 · 𝐼(ℎ)

𝐾

𝑘=1

+ ∑ 𝛾𝑚𝑗𝑧ℎ𝑚𝑖𝑗

𝑀

𝑚=1

+ 𝜖𝑖𝑗
(ℎ) (27) 

Where 𝐼(𝜑) is an indicator function equal to 1 if condition 𝜑 is true else 0.  
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3. Noise sources and their sound levels8  

Table 1: Noise sources and sound levels 

Noise Source Decibel Level 

(dBA) 

Decibel Effect 

Jet take-off (at 25 meters) 150 Eardrum rupture 

Aircraft carrier deck 140   

Military jet aircraft take-off from aircraft carrier with 

afterburner at 50 ft (130 dBA). 

130   

Thunderclap, chain saw. Oxygen torch (121 dBA). 120 Painful. 32 times as loud as 

70 dBA. 

Steel mill, auto horn at 1 meter. Turbo-fan aircraft at 

takeoff power at 200 ft (118 dBA). Riveting machine 

(110 dBA); live rock music (108 - 114 dBA). 

110 Average human pain 

threshold. 16 times as loud 

as 70 dBA. 

Jet take-off (at 305 meters), use of outboard motor, 

power lawn mower, motorcycle, farm tractor, 

jackhammer, garbage truck. Boeing 707 or DC-8 

aircraft at one nautical mile (6080 ft) before landing 

(106 dBA); jet flyover at 1000 feet (103 dBA); Bell J-

2A helicopter at 100 ft (100 dBA). 

100 8 times as loud as 70 dBA. 

Serious damage possible in 

8 hr exposure. 

Boeing 737 or DC-9 aircraft at one nautical mile (6080 

ft) before landing (97 dBA); power mower (96 dBA); 

motorcycle at 25 ft (90 dBA). Newspaper press (97 

dBA). 

90 4 times as loud as 70 dBA. 

Likely damage in 8 hour 

exposure. 

Garbage disposal, dishwasher, average factory, freight 

train (at 15 meters). Car wash at 20 ft (89 dBA); 

propeller plane flyover at 1000 ft (88 dBA); diesel truck 

40 mph at 50 ft (84 dBA); diesel train at 45 mph at 100 

ft (83 dBA). Food blender (88 dBA); milling machine 

(85 dBA); garbage disposal (80 dBA). 

80 2 times as loud as 70 dBA. 

Possible damage in 8 hour 

exposure. 

Passenger car at 65 mph at 25 ft (77 dBA); freeway at 

50 ft from pavement edge 10 a.m. (76 dBA). Living 

70 Arbitrary base of 

comparison. Upper 70s are 

                                                 
8 Source: IAC Acoustic website: http://www.industrialnoisecontrol.com/comparative-noise-examples.htm  

http://www.industrialnoisecontrol.com/comparative-noise-examples.htm
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room music (76 dBA); radio or TV-audio, vacuum 

cleaner (70 dBA). 

annoyingly loud to some 

people. 

Conversation in restaurant, office, background music, 

Air conditioning unit at 100 feet. 

60 Half as loud as 70 dBA. 

Fairly quiet. 

Quiet suburb, conversation at home. Large electrical 

transformers at 100 feet. 

50 One-fourth as loud as 70 

dBA. 

Library, bird calls (44 dBA); lowest limit of urban 

ambient sound 

40 One-eighth as loud as 70 

dBA. 

Quiet rural area. 30 One-sixteenth as loud as 70 

dBA. Very Quiet. 

Whisper, rustling leaves 20   

Breathing 10 Barely audible 

 

  



SOUND-WELLBEING MODELING USING WEARABLES  
 

 56 

References 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. 2014. 

“Bayesian Data Analysis,” Bayesian Data Analysis, CRC press. 

Gelman, A., and Hill, J. 2007. “Data Analysis Using Regression and Multilevel/Hierarchical 

Models,” Cambridge. 

Mai, Y., and Zhang, Z. 2018. “Software Packages for Bayesian Multilevel Modeling,” Structural 

Equation Modeling: A Multidisciplinary Journal (25:4), Routledge, pp. 650–658. 

Nakagawa, S., and Schielzeth, H. 2013. “A General and Simple Method for Obtaining R2 from 

Generalized Linear Mixed-Effects Models,” Methods in Ecology and Evolution (4:2), pp. 

133–142. 

Raudenbush, S. W., and Bryk, A. S. 2002. “Hierarchical Linear Models: Applications and Data 

Analysis Methods,” Advanced Quantitative Techniques in the Social Sciences 1 (Vol. 2nd). 

West, B. T., and Galecki, A. T. 2011. “An Overview of Current Software Procedures for Fitting 

Linear Mixed Models,” The American Statistician (65:4), pp. 274–282. 

 

 


	Abstract
	1. Introduction
	2. Background and Related Literature
	3. Field study using wearable devices
	4. Preliminary analysis
	5. Modeling Methods
	6. Analysis
	6.1 Data pre-processing
	7. Discussion
	8. Conclusion
	References
	1.   Multilevel model inference using Classical and Bayesian approaches
	2. Univariate transformation-based modeling method
	3. Noise sources and their sound levels
	References

