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On Coalition Formation: A Game-Theoretical Approach 1 ) 

By P.P. Shenoy, Lawrence 2 ) 

Abstract: This paper deals with the question of coalition formation in n-person cooperative games. 
Two abstract game models of coalition formation are proposed. We then study the core and the 
dynamic solution of these abstract games. These models assume that there is a rule governing the 
allocation of payoffs to each player in each coalition structure called a payoff solution concept. 
The predictions of these models are characterized for the special case of games with side payments 
using various .payoff solution concepts such as the individually rational payoffs, the core, the 
Shapley value and the bargaining set Mt i). Some modifications of these models are also discussed. 

1. Introduction 

The theory of  n-person cooperative games is a mathematical theory of  coalition 
behavior. A fundamental problem posed in game theory is to determine what outcomes 
are likely to occur if a game is played by "rational players". I.e. given an n-person co- 
operative game, it is natural to inquire ( I )  what will be the final allocation of  payoffs 
to each of the players and (2) which of  the possible coalitions can be expected to form. 
These two aspects of  coalition behavior are closely related. The final allocation of  pay- 
offs to each of  the players depend on the coalitions that finally form, and the coalitions 
that finally form depend on the available payoffs to each player in each of  these coali- 
tions. Since the publ ica t ion in  1944 of  the monumental  work Theory o f  Games and 

Economic Behavior by yon Neumann/Morgenstern [ 1944], most of  the research in 
n-person game theory has been concerned explicitly with predicting players'  payoff  
and only implicitly (if at all) with predicting which coalitions shall form. In this paper, 
the primary emphasis is on the second aspect of  coalition behavior, namely the forma- 
tion of  coalitions. Two models of  coalition formation are proposed based on the 
theory of  n-person games. As in most of game theory, our models are normative and 
use only endogenous arguments, that is, only information contained in the characteris- 
tic function is used. 
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No. DAAG-29-75-C-0024 and the National Science Foundation under Grant No. MCS75-17385 A01 
at the University of Wisconsin at Madison. The author is grateful to Professor William F. Lucas under 
whose guidance the research was conducted and to Professor Louis J. Billera for many helpful dis- 
cussions. 

2) Prof. P.P. Shenoy, The School of Business, The University of Kansas, Lawrence, Kansas 
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A brief review of  abstract games and its solutions is presented in section 2. In Sec- 
tion 3, two abstract game models of  coalition formation are proposed. In one ap- 
proach, payoff  allocations and coalition structures are modeled as the outcomes of  an 
abstract game on which an appropriate domination relation is defined. In another ap- 
proach, coalition structures alone are modeled as outcomes. In both cases, we study 
the core and the dynamic solution of  the abstract game. The two models are then 
cempared. Section 4 deals with the representation of  the models by means of  digraphs. 
In Section 5 - 8, the solutions of  the abstract games are characterized for the special 
case of  games with side payments using various payoff  solution concepts such as the 
individually rational payoffs, the core, the Shapley value and the bargaining set M ~i). 
Finally in Section 9, we discuss possible modifications in the definition of the domina- 
tion relation in the case where coalition structures alone are modeled as outcomes. 

2. Abstract Games and their Solutions 

An abstract game is a pair (X, dom) where X is an arbitrary set whose members are 
called outcomes of  the game, and dom is an arbitrary binary relation defined on X and 
is called domination. An outcome x E X is said to be accessible from an outcome 
y E X ,  denoted by x +-y ( o r y  ~ x ) ,  if there exists outcomes Zo = x, zl . . . . .  Zm. i,  
z m = y ,  where m is a positive integer such that 

x = z0 dom Z l dom z2 d o m . . ,  dom Zm.1 dom z m = y .  (2.1) 

Also assume x +-x, i.e. an outcome is accessible from itself. Clearly the binary relation 
accessible is reflexive and transitive. Two outcomes x and y which are accessible to 
each other are said to communicate and we write this as x ~ y. Since the relation 
accessible is transitive and reflexive, it follows that 

Proposition 2.1. Communication is an equivalence relation. 
We can now partition the set X into equivalence classes. TWo outcomes are in the 

same equivalence class if they communicate with each other. 
The set 

Dom(x) = (y E X :  x d o m y )  (2.2) 

is called the dominion ofx .  Also, we define the dominion of  any subset A c X by 

Dom(A) = U Dom(x). (2.3) 
x~A 

The core C [due to Gillies; Shapley, 1953] of  an abstract game is defined to be the set 
ofundominated outcomes. I.e. 

C = X -- Dom(X). (2.4) 

We can rewrite the definition of  the core in terms of  the relation accessible as follows. 
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C = ( x E X  : ~ y E X ,  y ~ x ,  wehavey~-x ) .  (2.5) 

I.e., in the terminology of Markov chains, the core is the set of all absorbing outcomes. 
Note that each outcomes in the core (if nonempty) is an equivalence class by itself. 

An elementary dynamic solution (elem. d-solution) of an abstract game is a set 
S C X such that 

if x E S, y E X -- S then y 4- x , (2.6) 

and 

ifx, y E S ,  t h e n x ~ y a n d y §  (2.7) 

It can easily be shown that 

Proposition 2.2. An elem. d-solution is an equivalence class. 
The converse, however, is not always true. Condition (2.6) requires S to be (in the 

terminology of Markov chains) a non-transient (recurrent, persistent) equivalence class. 
The dynamic solution (d-solution) P of an abstract game is the union of all distinct 

elem. d-solutions. I.e. 

P = U {S C X : S is an elem. d-solution). (2.8) 

We have the following easy result. 

Proposition 2.3. For all abstract games, C C P. 
It is clear that the dynamic solution always exists and is unique. However, it may 

sometimes be empty. However, i f X  is a finite set, we have the following two results. 

Lemma 2.4. I f X  is a finite set, thenP is the d-solution if and only i fP  satisfies 

Vx, yEP ,  y ~ x  i f f x ~ y .  (2.9) 

I f xEP,  y E X - - P ,  t h e n y 4 x .  (2.10) 

And 

I f y E X - - P ,  t h e n 3 x E P  such tha tx+-y .  (2.11) 

Theorem 2.5. I f X  is a finite set, then the d-solution is always nonempty. 
For proofs of these assertions and for a behavioral interpretation of the dynamic 

solution, see Shenoy [ 1977a]. The dynamic solution has also been defined independ. 
ently by Kalai/Pazner/Schmeidler [ 1976]. 

3. The Models 

We shall first introduce some notation and definitions. Let N = ~ 1 , . . . ,  n) denote 
the set of players. Let F be an n-person cooperative game (with side payments, without 
side payments or a game in partition function form). Let 2 N denote the set of all sub- 
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sets (coalitions) of N and II denote the set of all partitions (coalition structures, c.s.) 

of N. Let S : II ~ 2 En be a payoff solution concept, where 2 gn denotes the set of all 
subsets of the n-dimensional Euclidean space E n. Intuitively, given that the players in 
N align themselves into coalitions in the c.s. P E II, we interpret S (P) as the set of all 
likely disbursements of payoffs to players in N. E.g. S may denote the individually 
rational payoffs, the core, a vN - M stable set, the Shapley value, the bargaining set 
M ~i), the kernel, the nucleolus or any other payoff solution concept that indicates 
disbursement of payoffs as solutions of an n-person cooperative game. For PE 11, 
S (P) may be the empty set r (e.g. the core), or a single point in E n (e.g. the Shapley 
value or the nucleolus) or a nonempty subset ofE n (e.g. the bargaining set M ~i) or the 
kernel). If S(P) = ~ (interpreting this fact as players unable to reach an agreement on 
the disbursement of payoffs when they are aligned into coalitions in P), then we will 
assume for simplicity of exposition that Pis not viable. Let 11 (S)  denote the set of all 
viable coalition structures with respect to the payoff solution concept (p.s.c.) S, i.e. 

II(S) = (P e 11: S (P) ~: 0). (3.1) 

Definition 3.1. A solution configuration with respect to p.s.c. ,q is a pair (x, P) such 
thatx E S (P) and PE 11 (S). 

A solution configuration w.r.t.p.s.c. S represents a possible outcome of the n- 
person cooperative game where S represents any appropriate payoff solution concept. 
Let SC (S) denote the set of all solution configurations w.r.t.p.s.c. S, i.e. 

SC(S) = u IS(P) • {P}]. (3.2) 
~ n ( S )  

We now define a binary relation, domination, on the set SC(S) as follows: 

Definition 3.2. Let (x, P1 ) and 0', P2) belong to SC(S). Then (x, P1 ) dominates 
(Y, P2), denoted by (x, P1 ) dom(y, P2) iff 

3 a nonempty R E P1 such that x i >Yi for all i ER.  (3.3) 

Intuitively, if (x, P1 ) dom(y, P2), then the players in some coalition R in c.s. P1 
prefer P~ to P2. We require the players in subset R to be together in a coalition in c.s. 
P~ so that there is no conflict of interest between these player's preference for P1 and 
their allegiance to the other players in their coalition. 

The dominance relation as defined above may be neither asymmetric nor transitive. 
We now have an abstract game (SC(S),dom) where SC(S) is the set of outcomes and 
dom is a binary relation on SC(S). For this abstract game, we look at the core and the 
dynamic solution as defined in Section 2. 

Definition 3.3. Let P be an n-person cooperative game 3) and S be a p.s.c. The core of  
solution configurations w.r.t.p.s.c. S, denoted by Jo (S), is the core of the abstract 
game (SC( S),dom). 

Definition 3.4. Let [' be an n-person cooperative game and S be a p.s.c. The dynamic 

3) In this section, r denotes an n-person cooperative game with side payments, without side 
payments or a game in partition function form. 
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solution of  solution configurations w.r.t.p.s.c. S, denoted by J1 (S), is the dynamic 
solution of the abstract game (SC(S),dom). 

From Proposition 2.3, we obtain the following result. 

Proposition 3.1. Jo(S) c J1 (S). 
The core of an abstract game is a very intuitive and plausible solution concept. 

However, for some games and for certain p.s.c., Jo(S) may be an empty set. In such 
cases, we can proceed to look at J1 (S) as a solution concept. If the p.s.c. S is such 
that S(P) is a unique point inE n for each PE  H(S) with II(S) :/: ~}, then the set SC(S) 
is finite and nonempty. By appealing to Theorem 2.5, we conclude the following result. 

Proposition 3.2. Let F be an n-person cooperative game and S be a p.s.c, such that 
II(S) q: O and assume that S(P) is a unique point in E n for each P E II(S). Then 
]1(S)=/= 0. 

In another approach, we model just the set of all viable coalition structures H(S) as 
the outcomes of an abstract game. A domination relation on 1](S) is defined as follows. 

Definition 3.5. Let/91, P2 E II(S), • =/=R @ 2 N and S be a p.s.c. Then/91 dominates 
P2 via R w.r.t.p.s.c. S, denoted by/91 dom R (S) P2, iff 

R E PI (3.4) 
and 

for eachy E S(P2), 3 anx  E S(P1) such that xi >Yi V i E R .  (3.5) 

Intuitively, if/91 dOmR (S)/92, then the players in subset R prefer/9i to/92 because by 
Condition (3.5), no matter how the players disburse the payoffs corresponding to c.s. 
/92, each player in R will do better in c.s. PI. Condition (3.4) is imposed for the same 
reasons Condition (3.3) is imposed in Definition 3.2. 

Definition 3. 6. Let P1, P2 E II(S) and S be a p.s.c. P1 dominates P2 w.r.t. S, denoted 
by P1 dom(S) P2, iff 

3 a nonempty R C 2 N such that /91 dom R (S) P2- (3.6) 

We.now have another abstract gamr dom(S)) where II(S) is the set of out- 
comes and dom(S) is the binary relation on H(S). Once again we look at the core and 
the dynamic solution of this abstract game. 

Definition 3. 7. Let F be an n-person cooperative game and S be a p.s.c. The core of  
coalition structures w.r.t.p.s.c. S, denoted by Ko(S), is the core of the abstract game 
(H(S), dom(S)). 

Definition 3.8. Let F be an n-person cooperative game and ._q be a p.s.c. The dynamic 
solution of  coalition structures w.r.t.p.s.c. S, denoted by K1 (,_q), is the dynamic 
solution of the abstract game (H(S), dom(S)). 
Once again, by appealing to Proposition 2.3, we have: 
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Proposition 3.3. Ko(S) c K1 (S). 
Also, since II(S) is always finite, we have: 

Proposition 3.4. Kt ( S) =/= O. 
The following results gives a comparison of the two models. 

Theorem 3.5. Let P be an n-person cooperative game and S be a p.s.c. Then we have 

Ko(S) D {PC Fl: (x, P)EJo(S)) .  

Proof: Let P I E  ( P EII:  (x, P) E Jo (S)}. Then 3 x E S (P1) such that (x, P1) is 
undominated in SC(S) which implies that/91 is undominated (w.r.t. S) in 1I(S), i.e., 
Pl E Ko (S). [] 
Another consequence of the definitions of K0 (S) and 3"o (S) is as follows: 

Theorem 3.6. Let P be an n-person cooperative game and S be a.p.s.c, such that 
VPE IL S(P) is either a single point set inEn or an empty set. Then 

Ko(S)  = {P~rI: (x, P) elo(S)} 

and 

Jo(S) = {(s(v),  v): V~Ko(S)}. 

If J0 (S) q: 0, then the solution configuration model indicates both coalition struc- 
tures and distribution of payoffs among the players as solution in Jo(S) whereas the 
coalition structure model indicates only coalition structures as solutions in Ko (S). Also 
by Theorem 3.5,Jo(S) indicates fewer (or at most an equal number of) coalition struc- 
tures as solutions compared to Ko(S). However, if the p.s.c. S is such that for each 
P EII,  S(P) is either a single point in E n or an empty set, then the two models are 
identical (expect in form) and indicate the same results. 

Note that the stability of the core is much stronger than the stability of the dynamic 
solution. Hence ifKo(S) (do(S)) is non-empty, we shall use Ko(S) (do(S)) as the 
prediction of the coalition structure (solution configuration) model. We shall look at 
K1 (S) (dl (S)) only ifKo(S) (Jo(S)) is an empty set. 

In the next section, the c.s. model is represented by means of digraphs. The predic- 
tions of this model, Ko(S) and Kl (S), are then described in graph theoretic terminol- 
ogy. Subsequently, in sections 5, 6, 7 and 8, the predictions of the c.s. model and the 
s.c. model w.r.t, various p.s.c.'s are studied for the special case of games with side 
payments. 

4. Representation by Digraphs 

Since the number of coalition structures is finite, we can represent the abstract: 
game (II(S), dom(S)) of a game on N by means of a directed graph (or digraph). 
Given a payoff solution concept S, let D = D(S) be a digraph whose vertex set 
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V(D) = II(S) and whose arc set A (/9) is given by 

A(D) = ((P1 ,P2) e II(S) X I-I(S): Pt dom(S) P2}- (4.1) 

We call such a digraph D the domination digraph of the abstract game (II(S), dom(S)). 

Example 4.1. Let F be a 3-person game on (1,2,3). Let S be a p.s.c, defined as 
follows: 

Let 0 ~< a ~< b ~< c = d be real numbers such that c > a + b and 

S ( P )  = 

(0,0,0) if P = ((1}, (2}, (3)) 

(04,0) if P=  {{1,2), (3)) 

(O,0,b) if/9 = {{1,3), {2)} 

{(O, x2, c--x2): a<~x2 <~c--b} if P =  {{1), (2,3)) or ((1,2,3)). 

To condense notation, we shall drop the braces around coalitions in coalition structures 
and, for example, denote ((1), (2,3}) by (1) (23). Note that 

(1) (23) dom(S) (1) (2) (3), 

(1) (23) dom(S) (12) (3), 

(1) (23) dom(S) (13) (2). 

The domination graph of the game F is shown in Figure 4.1. 
Let (P1, P2) EA(D). Then we say P, is adjacent to P2 and P2 is adjacent from 

F1. The outdegree, od(P), for P E II(S) is the number of c.s.'s adjacent from it and the 
indegree, id(P), for P E II(S) is the number adjacent to it. Then, in terms of this 
terminology, the core of the abstract game (II(S), dom(S)) is given by 

Ko(S) = {P e V(D): id(P) = 0). (4.2) 

In Example 4.1, Ko(S) = {(1) (23), (123)). 

(i) (2) (3) 

(12) (3) @ (123) 

( - ~ w (i) (23) 

Fig. 4.1: The domination digraph of game in Example 4.1 
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The converse digraph D' of D has the same vertex set as D and the arc 
(/91, P2) ~ A ( D ' )  r (P2, P1 ) EA(D) .  Thus the converse of D is obtained by reversing 
the direction of every arc in D. I f D  = D(S)  is the domination digraph of the abstract 
game (II(S), dom(S)), then we call its converse D' = D'(S)  the transition digraph of 
the abstract game (II(S), dom(S)). The transition digraph of the game in Example 4.1 
is shown in Figure 4.2 

(i) (2) (3) 

Fig. 4.2: The transition digraph of the game in Example 4.1 

To define the dynamic solution in terms of the transition graph, we need a few 
basic definitions from graph theory [cf. Harary]. A (directed) walk in a digraph is an 
alternating sequence of vertices and arcs/90, el ,  P1 . . . . .  en, Pn in which each arc e i 
is (Pi-1, Pi). A closed walk has the same first and last vertex. Apa th  is a walk in which 
all vertices are distinct; a cycle is a nontrivial closed walk with all vertices distinct 
(except the first and the last). If  there is a path from P1 to P2, then P2 is said to be 
accessible f rom P1. A digraph is strongly connected or strong if any two vertices are 
mutually accessible. A strong component  of a digraph is a maximal strong subgraph. 
Let T1, 7'2, �9 �9 �9 T m be the strong components of D. The condensation D* of D 
has the strong components of D as its vertices, with an arc from T i to T/whenever there 
is at least one arc in D from a vertex of T i to a vertex of/~.  (See Figure 4.3). It follows 
from the maximality of strong components that the condensation D* of any graph D 
has no cycles. Let D'(S)  be the transition graph of the abstract game (II(S), dom(S)) 
with strong components T1, 7/'2 . . . . .  T m . 

D : ~ /  T3 

T 2 

D* : 
T 2 

Fig. 4.3: A digraph and its condensation 
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Then the dynamic solution of  the abstract game is given by 

KI(S)  = U {Ti: od(T/) = 0 in the condensatlonD }. 

In Example 4.1, KI (S)  = {(I) (23), (123)}. 

141 

(4.3) 

5. Solutions with Respect to the Individually Rational Payoffs 

In the next four sections, we will characterize the solutions of  the abstract games 
for the special case of  games with side payments using various payoff  solutions con- 
cepts. 

A cooperative n-person game in characteristic function form with side payments 
is a pair (N, v) where N = {1 . . . . .  n} denotes the set of  players (as stated before) and 
v is a nonnegative real-valued function defined on the subsets of  N which satisfies 
v (0) = 0 and v ({i}) = 0 for 4) all i E N .  

The individually rational payoffs (i.r.p.) corresponding to coalition structure 
P = (P1 . . . . .  Pm ) E 11 is the set 

F(P)  = {x EEn: i ~  D x i = V (6.) for all] = 1 . . . . .  m 
= j  

and 

x i >~ v (i) for s ) all i EN}.  

When P = (N), I((N)) is also referred to as the set of  imputations. Since I(P)  is non- 
empty for all PE  II, we have 

11(/) = 11. 

A game (N, v) is said to be superadditive if 

RI n R2 = O, R1,R2 E 2N ~ v(R1) + v(R2 ) <- v(R1 U R 2 )  

and strictly superadditive if strict inequality holds in Relation (5.1). 
Define the worth of  a coalition structure P in the game (N, v) by 

Let 

(5.1) 

(5.2) 

z = max w(P) (5.3) 
P~H 

4) This condition and the nonnegativity restriction on v causes no real loss of generality since 
all the payoff solution concepts we consider are invariant under strategic equivalence. 

s) To condense notation, we shorten expressions like v ({i, 1", k)) to v (i/k) and so on. 
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and define 

I1 z = {P ~ II: w(P)  = z}. 

I f x  E E  n and R C N ,  let x(R) denote 
i~R 

(5.4) 

x r Then we have the following theorem. 

Theorem 5.1. Let I" be an n-person cooperative game with side payments. Then 
Ko(/)  :~ ~. In particular, we have Ko(/)  ~ II z. 

Proof. Let 191 = 1 1 ,plm) E . (PI, P2 . . . .  H z Suppose 3 19 E II such that 19dom(/) p l ,  i.e. 
m 

3 R EP such that 19 dora R (/) 191. Now we can write R = W (R n P~ ). P icky  ~ i ( p l  ) 
i=1 

such that y (R n P~ ) = v (P~) if R n P~ ~ ~ for all i = 1, 2 . . . . .  m. Since 19 dom R (/) 191, 

3 x  E I(19) s.t. x i > Y i  for all i E R .  I.e. v(R)  = x ( R ) > y ( R )  = p.1 ~ -  v (P~  ). Pick 

19~ S II as follows. 192 = (R) U {P]: P~ n R ~ q~} u {P} - R:  ~ n R =/= q)} Then 
w(P 2) > w(191 ), a contradiction! This completes the proof. [] 

The following example will show that, in general, we cannot make a stronger 
statement than in the theorem above. 

Example 5.1. Let F be a 4-person game with 

v(12) = v(34) = v(23) = 1, and v(R)  = 0 for all other R C N .  

Let Pl = (12) (34), 192 = (14) (23) and Pa = (1) (23) (4). W(Pl ) = 2, 
w(P2) = w(193)= 1. But K o ( / ) =  (Pl ,  P2,193}. 
However, we do have the following. 

Theorem 5.2. Let V be an n-person game with side payments  such that (N) E H z . Then 
Ko (/) = II z. 

Proof: From Theorem 5.1 we need prove only Ko (/) C II z. Let t91 E II such that 
191 ~ Hz, i.e. w(191 ) < z. Then (N) dom(D P1. This is seen as follows. Let x E I(191 ). 
Then x (N) = w(P1 ) < z. Define y so that Yi = xi  + (z -- w(P1 ))/n for all i E N. Then 
y EI ({N})  andYi > x  i for all i E N .  [] 

Corollary 5.3. Let V be a superadditive game. Then Ko(/)  = II z. Furthermore, if I ~ is 
strictly superadditive, then Ko(/)  = {(At)}. 

Proof." P superadditive =~ (iV) E IIz, and P strictly superadditive =~ II z = {(N)). 
For the solution configurations model, no general existence result is possible as is 

illustrated by the following example: 

[] 

Example 5.2. Let F = (N, v) be a 3-person game with 

v(12) = v(13) = v(23) = 2, v(123) = 2.5. 

If can easily be shown that for this game Jo( / )  = ~. 
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6. Solutions with Respect to the Core 

Let (N, v) be a cooperative game with side payments. Then the core of  the game 
(N, v) corresponding to c.s. P E H is defined by 

Co(P) = (x EI(P):  x(R) >1 v(R) for all R E 2N). (6.1) 

The core corresponding to a particular c.s. may be empty. Hence in general II(Co) :~ H. 
in fact, for some games the core corresponding to every c.s. may be empty, i.e., 
II (Co) = 0. A characterization of Ko (Co) and Jo (Co) is as follows. 

Theorem 6.1. Let (N, v) be a cooperative game with side payments. Then, 

Ko(Co) = II(Co) = (P: Co(P) @ 0). 

Also 

& ( C o )  = s c ( c o )  = u [Co(p) x {p}]. 
Pen(co) 

Proof: Let Pl, P2 E II(Co). Suppose Pl dOmR(CO) P2 for some R E Pl. LetyECo(P2).  
Then 3x E Co(P1) s.t. x i >Yi for all i ER.  I.e. x(R) >y (R) .  But since R E P1, 
x(R) = v(R). Hence y (R) < v (R) contradicting the fact that y E Co (P2)- The proof 
of the second assertion is similar to the first. [] 

Corollary 6.2. Let (iV, v) be a cooperative game with side payments. Let S be a p.s.c. 
such that, for all P c  II, S(P) C I(P), and S(P)  n Co(P) ~ 0 whenever Co(P) q= O. 
Then Ko(Co) C Ko(S) and {P: (x, P) EJo(Co)) c (P: (x, P) EJo(S)). 

In light of Theorem 6.1 we would like to characterize the coalition structures with 
nonempty cores. The next two theorems along with a known characterization of 
games with nonempty cores corresponding to the grand coalition N accomplish this 
task. 

Theorem 6.3. Let (N, v) be a cooperative game with side payments. If II(Co) :~ 0, 
then I1(Co) = 11 z. 

Proof: Let Pl E II(Co), and suppose Pl ~ IIz. Then 3 P2 E H such that w(P2) > w(Pl ). 
Let x E Co(P1 ). Then x(R) >~ v(R) for all R C N which implies that 
w(P1 ) = x(N) ~> w(P2) and this is a contradiction! Hence H(Co) C H z. 

Let Pl E II z and assume P2 E II(Co) c H z. Let x E Co(P2 ). Then x(R) >1 v(R) for 
all R C N. I fx  (P) > v(P) for some P E Pl, then w(P2) = x(N) > w(Pl ), contradicting 
the fact that Pl E II z . Hence x (P) = v(P) for all P ~ Pl =~ x E Co(P1 ) = Pl E 11(Co). 
Therefore H (Co) D rl z. [] 

Corollary 6.4: Let (N, v) be a game with side payments. Then for all Pl, P2 E If(Co), 
Co(Pl ) = Co(P2). 
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Corollary 6.5. Let (N, v) be a game with side payments. If there is a PE  II z such that 
Co(P) = 0, then II(Co) = r 

Given a game F = (N, v) define game F z = (N, Vz) derived from I ~ as follows. 

z i f R = N  

v z (R) = (6.2) 

v(R) for all otherR C N  

where z = max w(P). 
Pen  

When there is more than one game under discussion, we shall denote the sets 
Co(P), II(Co) and 11 z by Co(P, F), II(Co, r) ,  and I] z (F), respectively. 

Theorem 6.6. Let F = (N, v) be a game and I" z be as in Relation (6.2) Then if 
Co(P, r)  ~ 0, Co(P, r)  = Co((N), rz). 

Proof: From the definition of F z it is clear that for P :/: (N) Co (P, F) = Co(P, F z). From 
Theorem 6.3 we obtain I1(Co, l-'z) = IIz (rz). Since (N) E 11 z (Fz) , by Corollary 6.4, 
Co(P, Fz) = Co ((N), Fz). Hence the theorem follows. [] 

Games with nonempty cores corresponding to the grand coalition have been 
characterized by Bondareva [ 1962, 1963 ] and Shapley [ 1967]. For the sake to com- 
pleteness we will repeat this characterization here. 

A balanced set B is defined to be a collection of subsets R of N with the property 
that there exist positive numbers 6R MR E B called weights, such that for each i E N  
we have 

~R = 1. (6.3) 
(R E B :iER ) 

A game (N, v) is called balanced iff 

Y, 8 R v(R) < v(N) 
REB 

holds for every balanced set with weights (6R)- The following theorem was proved by 
Bondareva [1962, 1963] and Shapley [1967]. 

Theorem 6. 7. Let (N, v) be a game. Then Co((N)) 4 :0  if and only if the game is 
balanced. 

Corollary 6.8. Let P = (N, v) be a game. Then II (Co, P) 4= 0 if and only if the game 
(N, Vz) is balanced. 

Proof: (Necessity): II(Co, F) 4:0 =' Co((N), (N, Vz) ) 4:0 (by Theorem 6.6) = (N, Vz) 
is balanced (by Theorem 6.7). 
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(Sufficiency): If  Pz = (N, Vz) is balanced ~ Co((N), Fz) :~ 0 (by Theorem 6.7). I f  
(A r) E II z (P) then V = F z and we are finished.Otherwise 3 P E I I  z (Fz) such that 
P :/: (N). Then, Co(P, F) = Co(P, Fz) = Co((N), Fz) :/: 0. [] 

Thus we have completely characterized Ko(Co) and J0 (Co) for all games with side 
payments. 

Example 6.1. (A game with no solution. See Lucas [1968, t 969].) Let 
N = (1,2,3,4,5,6,7,8,9,10) and v be given by 

v(N) = 5, v(13579) = 4, 

v(12) = v(34) = v(56) = v(78) = v(910) = 1, 

v(3579) = v(1579) = v(1379) = 3, 

v(357) = v(157) = v(137) = 2, 

v(359) = v(159) = v(139) = 2, 

v(1479) = v(3679) = v(5279) = 2, and 

v(R) = 0 f o r a l l o t h e r R C N .  

In this game z = 5, 11 z = fiN), P1 = (12) (34) (56) (78) (910)) and 
Co((N)) = Co(P1 ) = (x: x(12)  = x(34) = x(56)  = x(78)  = x(910) = 1, and 
x(13579)  f> 4). By Theorem 6.1, 

Ko (Co) = ((N), Pl ), 

and 

Jo(Co) = Co((N)) X ((N), ;o~ ). 

7. Solutions with Respect to the Shapley Value 

Shapley [1953] defined a unique value satisfying three axioms for all n-person co- 
operative games with side payments. It was assumed that the grand coalition would 
form. Later, Aumann/Dreze [ 1974] generalized the axioms to define the Shapley value 

for all coalition structures. 
A permutation ct of  N is a one-one function from N onto itself. For R E 2 N, write 

aR = {ai: i E R ) .  If  v is a game on N, define a game a * v on N by 

(a * v) (R) = v(aR) for all R E 2 N. (7.1) 

Also, if v and u are games on N, define a game v + u on N by 

(v + u) (R) = v (R) + u (R) for all R E 2 N. (7.2) 

Call a c.s. P = (PI . . . . .  Pm) invariant under ~ if o~  l = P/. for all ] = 1 . . . . .  m. Player 
i is null if v(R u (i)) = v(R) for all R E 2 N. Let G N denote the set of all games with 
side payments o n N .  Since we assume that for all games with side payments, v(0) = 0 
and v(i) = 0 V i EN,  G N is a Euclidean space o f  dimension 2 n --  (n + 1). 
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F i x N  = (1 . . . . .  n} and P = (PI . . . .  ,Pm) E 11. The Shapley value corresponding 
to c.s. P is a function e p  from G N to E n i.e. a function that associates with each game 
a payoff.vector satisfying the following axioms: 

A.1 (Relative Efficiency): ~p(v)  (Pj) = v(P]) for a l l / =  1 . . . . .  m. 

A.2 (SymmetryJ: For all permutat ionsa of  N u n d e r  which P is invariant, 

�9 /) (~ * v) (R) = ~r,(v) (~R).  

A.3 (Additivity): ~p(v  + u) = ~p(v) + ~pp(u). 

A.4 (NullPlayerAxiom}: I f / i s  a null player, then ~p(v) (/) = 0. 

When P = (N), the above axioms are equivalent to Shapley's axiom which specify a 
unique value r = (~1 (v) . . . . .  en (v)) given by 

(~i (v) = ~P(N)(v)(0 = ~ ( r -  1) [ (n - - r )  ! R cN n[ [ v ( R ) - - v ( R -  (i))] (7.3) 

where r = I R I, the cardinality of  coalition R. For eachR E 2 N, denote by v I R the 
game on R defined for all T C R by 

(v I R)  (T) = v(T). (7.4)  

Theorem 7.1. Fix N and F = (Pl . . . .  , Pro)" Then there is a unique value ~ p  and it is 
given for a l l / =  1 . . . . .  m and i E P / b y  

(~pv)  (i) = (e~(pi)(v I P/)) (0- (7.5) 

Proof: See Aumann/Dreze [ 1974, 220-221 ]. 
Since ~I,(P) is 6) nonempty for all P E II, I I (~)  = II. Also note from (7.3) that i fv  

is superadditive, then ~ ( P )  (i) t> 0 and hence ~ ( P )  E I (P ) .  Also, since ~ (P )  consists 
of  a unique outcome for all P E 11, by Theorem 3.6 the s.c. model and the e.s. model 
give identical results. For convenience, all the results in this section are stated only for 
the c.s. model. 

A partial existence theorem for Ko(~)  is as follows: 

Theorem Z2. Let F be art n-person game in which the only coalitions with positive 
values are all the (n -- 1)-person and n-person coalitions. Then Ko(ff)  :/: 0. 

Proof: Let us denote the game as follows: 

v(i) = 0 for all i EN,  

v (N- - ( i ) )=a  i for aI1 i EN,  

v(N) = b, and v(R) = 0 for all other R C iV. 

6) When there is no doubt about the game v under consideration, we shall denote ~ p(v) by 
(79) which is consistent with the previous section. 
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We can assume (by relabeUing of the players) that 

al <~a2 <~.. .  <~a n. (7.6) 
n 

Leta  = i=1 ~ ai and Ilan = {P E II: w(P) =an) .  Using (7.3) and (7.5) we have 

�9 ((N)) (i) = ((n - 1) b +a  - n "  ai) / (n(n - 1)). (7.7) 

By (7.6) we have 

(I)((N)) (1) i> ~((N)) (2) t > . . .  ~> (I)((N)) (n). (7.8) 

Also 

a i/(n -- 1) for ] = 1 , . . . ,  n 

(I)((N-- i) (i)) O') = ] ~ i (7.9) 

0 f o r / =  i. 

Clearly, the only c.s.'s we need look at are (N) and (N--  i) (i) for i = 1 , . . . ,  n. All the 
c.s.'s not in Han (except (N)) are dominated by c.s.'s in IIan. From Expressions (7.7), 

(7.7), (7.8) and (7.9) it follows that (iV) dom(~)  (N -- n) (n) iff 

i.e.iff 

(I,((N)) (n - 1) > q ) ( (N-  n) (n)) (n - 1) 

b > (n (a n + an.l)  - -a ) / (n  -- 1). 

Also i fa n = an. 1 (i.e. (N -- (n -- 1)) (n -- 1) ~ Ilan ) then 

(N) dom (~) (N -- (n -- 1)) (n -- 1) 

iff 

~)((N)) (n) > (I)((N- (n - I)) (n - I)) (n), 

i.e. iff 

b > (n (a n + a n -1 ) - -  a)  / (n - -  1). 

Now, 

(N--  n) (n) dom((b) (N) 

iff 

(I)((N-- n) (n)) (1) > r ((N)) (1), 

i.e. i f f  

b < ( n  (a n + a l ) - - a ) / ( n - -  1). 
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Hence we have 

Ko(r  = 

(N) 

Ha n 

(.,V) u l l  
n 

I fb  > (n (a n + an_l) --a)/(n -- 1) 

i fb  < (n (a n + a l ) - - a ) / ( n - -  1) 

otherwise. [] 

Corollary 7.3. Let F be a 3-person game with side payments. Then Ko(r  :# O. 
In general, this is the strongest existence result we can obtain. I.e. there is a 4-person 

game for which Ko(r  = O. This is shown in Example 7.5. 
If Co(P) :/: O, * (P )  may not belong to Co(D. Hence Corollary 6.2 is not applicable 

for the Shapley value. The following example illustrates this fact. 

Example 7.1. LetN = {1,2,3) and v be given by 
v(13) = 50, v(13) = 56, and v(123) = 80. Then 

r  = 

v(1) = v(2) = v(3) = 0, v(12) = 50, 
the Shapley value is given by: 

(24.67, 27.67, 27.67) if P = (123) 

(0, 28, 28) if P = (1) (23) 

(25, O, 25) if P = (13) (2) 

(25, 25, O) if P = (12) (3) 

(0, 0, 0) if P = (1) (2) (3). 

Note that Co((123))= Cony{(20, 30, 30), (24, 26, 30), (24, 30, 26)) but 
r ~ Co((123)). The transition digraph is shown in Figure 7.1, and hence 
Ko (r = Ka (r  = (1) (23). 

(12) (3) 

(13) (2) 

Fig. 7.hThe transition digraph for Example 7.1 

(i) (2) (3) 

</ c121123 
The above example illustrates a weakness of the Shapley value in that the Shapley 

value is derived entirely from the characteristic function rather than the bargaining 
positions of the players in the process of coalition formation. However, the Shapley 
value has been extensively used as an a priori measure of power of players in "simple" 
games. Hence the study of Ko(~) and K~ (~) is most appropriate for simple games. 

The class of all simple games forms a subclass of the class of all cooperative games 
with side payments. A simple game is a game in which every coalition has value either 
1 or O. A coalition R C N i s  winning if v(R) = 1 and losing if v(R) = O. A simple game 
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can be represented by a pair (N, W) where N is the set of players and W is the set of 
winning coalitions. A simple game is monotonic iffR E W and T D R ~ T E W, and 
proper iffR E W ~ N  --R ~ W. A winning coalition R is called minimal winning if 
every proper subset of R is losing. A monotonic simple game can be represented by the 
pair (N, W m) where W m is the set of all minimal winning coalitions. If W m = { {i}}, 
then player i is said to be a dictator. I f / E  N W m ~= O, then player] is said to be a veto 
player. I fk  ~ U W m then player k is said to be a dummy. Dummies play no active role 
in the game and for all practical purposes can be omitted from the set of players. A 
weighted majority game is a monotonic simple game that can be represented by 

[q: al ,  a2 . . . . .  an] (7.10) 

where q/> 0 is called the quota, a i >~ O, i = 1 . . . . .  n is the weight of the i-th player, 
a n d R E  W ~* ~ a i >~q. Expression (7.10) is said to be a weighted majority repre- 

i~R 
sentation of the simple game. Two weighted majority representations are said to be 
equivalent if they represent the same simple game. E.g. [ 2 ;1,1,1 ] and [5 ;2,3,4] are 
equivalent since both represent the game ({1,2,3}, W m = {(12), (13), (23)}). Not every 
monotonic simple game has a weighted majority representation [see Shapley, 1962]. 

Example Z2. The most common of all simple games is the straight majority game 
M n , n odd, in which 

W m = {R C N: IR I = (n + 1)/2} 

where [ R I denotes the cardinality of coalition R. The Shapley value is given by 

�9 (P) (i) = { I/IRI0 i f i E R E W ,  R E P o t h e r w i s e .  

It is clear that 

Ki (q~) = Ko (~) = {P E II: P contains a minimal winning coalition}. 

Example Z3. The pure bargaining game B n , is given by W m = {(A0}. The Shapley 
value is given by 

I 1 / n  i f P = ( N )  

~(P) (0 
O" otherwise 

clearly, KI (@) = Ko(@) = {(AT)}. 

Example 7.4. Let P be a proper game with a dictator. Then 

= / 1 if l i sa  dictator 

~(P)  (i) 

t 0 otherwise. 
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Hence KI (~) = Ko(~) = II. Note that every player who is not a dictator is a dummy. 
So essentially we have a 1-person game in which the only player is winning by himself. 

Example 7.5. Consider the weighted majority game [3;2,1,1,1]. The minimal winning 
coalitions are W m = {(12), (13), (14), (234)}. The Shapley value is given by 

(1/2, 1/6, 1/6, 1/6) if P = (1234) 

(2/3, 1/6, 1/6, 0) if P = (123) (4) 

(2/3, 1/6, 0, 1/6) if P = (124) (3) 

(2/3, 0, 1/6, 1/6) if P = (134) (2) 

~ ( P ) =  (1/2, 1/2,0,0)  i f P  = (12) (34) or (12) (3) (4) 

(1/2, 0, 1/2, 0) if P = (13) (24) or (13) (2) (4) 

(1/2, 0, 0, 1/2) if P = (14) (23) or (14) (2) (3) 

(0, 1/3, 1/3, 1/3) if P = (1) (234) 

(0, 0, 0, 0) otherwise. 

The transition digraph of the game is shown in Figure 7.2. Since all c.s.'s that contain 
only losing coalitions are dominated, these are omitted from this transition digraph. 
Note that Ko (~) = g). However, 

KI (~) = {(1) (234), (12) (3) (4), (12) (34), (134) (2), (13) (24) 

(13) (2) (4), (124) (3), (14) (23), (14) (2) (3), (123) (4)). 

A closer look at the Shapley value for different c.s.'s in Example 7.5 reveals the 
following observation. If players 1 and 2 who are in a winning coalition with 3 in the 
c.s. (123) (4) decide to expel player 3 from the coalition and form the smaller winning 
coalition (12), one would expect both players not to decrease their power in the 
smaller winning coalition (12) since there are fewer players to share the same amount 
of power. However, player 1 actually does decrease his power from 2/3 to 1/2. We 
shall call this phenomenon the paradox of  smaller coalitions. To understand why this 
phenomenon occurs, let us look at Theorem 7.1. It states that given a c.s. 

(12) (34) 
(12) (3) (4) " ~ (134) (2) 

(124) (3) 

_ (1234) 
) 

(13) (24) 
(13) (2) (4) 

Fig. 7.2: The transition digraph in Example 7.5 
(14) (23) 

(123) (4) (14) (2) (3) 
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P = (PI . . . . .  Pro) the Shapley value of player i in coalition P/depends only on the 
subgame v I Pj. I.e. the Shapley value of a player in a coalition is oblivious of the 
presence of other players not in the coalition for bargaining purposes. We shall regard 
this phenomenon as a "flaw" in the properties of the Shapley value. To make the 
above discussion more formal, let P = (N, W) be a simple game and o be a payoff  
value concept (i.e. for all games and for each P E H, o(P) is a single point in E n , where 
n = the number of players). We say P does not exhibit the paradox o f  smaller coali- 
tions w.r.t, payoff  value concept 0 iff the following holds: 

Let P~, P2 E H such that there existsP~ E P1 N W and 

P2 E P2 n {g satisfyingP2 CP1. Then 

o(P2)( i)>~o(Pa)( i)  for all i EP2. 

The following result is a consequence of the above definition. 

Theorem 7.4. Let P be a proper monotonic simple game that does not exhibit the 
paradox of smaller coalitions w.r.t, ep. Then Ko(e;) 4: ~. 

Proof: Let T E W m such that I T I <~ I R [ for all R E W m . Let P E 11 be such that 
T E  P. Then q~(P) (/) = 1/[ T[ for all i E T. Suppose 3P1 EII  such that 
P1 domR (~)P  for some R E P1, i.e., cb(P1 ) (i) > ~(P)  (/) for all i ER.  Let R' be 
any minimal winning coalitioncontained in R, i.e. R' C R and R' C W rn . Let 
P2 EII  be such that R' E P2- Then since 1 ~ does not exhibit the paradox, 
O(P2) (i) ~> O(Pt ) (i) for all i ER ' .  Also 

~ ( P 2 ) ( i ) =  {10/IR'I i f i E R '  

otherwise. 

Since r' is proper, R'  n T 4: 0. Hence for all i E R '  N T, 
1/I R'I  = ~(P2) (i)/> ~(P1 ) (i) > ~(P)  (0 = 1/[ T I, which is'a contradiction (since 
IR' I~>l TI)! 

Let 

t = min [R I 
R~W m 

and let 

II t = (P E l i :  P contains a winning coalition of size t). 

Then we obtain the following. 

[] 

(7.11) 

(7.12) 

Corollary 7.5. Let P be a proper monotonic simple game that does not exhibit the 
paradox of smaller coalitions w.r.t, cI,. Then Ko (ep) D 11 t. 

That in general we cannot strengthen the above result is shown by the following 
example. 



152 P.P. Shenoy 

Example 7.6. Let P be a 4-person game represented by [4;2,2,1,1]. The minimal 
winning coalitions are {(12), (34), (234)). The Shapley value is given by 

a, (V) = 

(1/2, 1/2, O, O) 

(1/2, 1/2, O, O) 

(1/3, O, 1/3, 1/3) 

(0, 1/3, 1/3, 1/3) 

(1/3, 1/3, 1/6, 1/6) 

if P = (12) (34) or (12) (3) (4) 

if P = (123) (4) or (124) (3) 

if P = (134) (2) 

if P = (1) (234) 

if P = (1234). 

Note that the game does not exhibit the paradox of smaller coalitions. Also t = 2, and 
H t = {(12) (3) (4), (12) (34)). However, Ko(~) = {(12) (3) (4), (12) (34), (123) (4), 
(124) (3)}. Observe that players 3 and 4 are dummies in the subgame on {1,2,3) and 
{1,2,4) respectively. 

An interesting problem raised by Theorem 7.4 is to characterize the class of games 
that do not exhibit the paradox of smaller coalitions w.r.t. ~. Let us look at symmetric 
games. A game (N, v) is called symmetric if the value of a coalition depends only on 
the size of the coalition. A symmetric monotonic simple game is of the type 
Mn, k = (N, W) where W = {R C N: I R I ~  > k). The following proposition follows from 
the symmetry axiom of the Shapley value. 

Proposition 7. 6. Let r' be a symmetric monotonic simple game. Then I ~ does not 
exhibit the paradox of smaller coalitions w.r.t. ~. In fact, Ko(~) = II r 

Proof: The Shapley value is given by 

�9 (P) (i) = 

1/I R I 

0 

i f i E R  E P a n d R E  W 

otherwise. 

Hence the result follows from Statement (7.5). [] 

The result in Proposition 7.6 (and also in Example 7.2) is known as "Riker's size 
principle" in the political science literature [see Riker/Ordeshook]. Riker's theory is 
that in zero-sum games with side payments, only minimal winning coalitions will form. 
Note that l-I t consists of all minimal winning coalitions only. The result in Example 
7.6 shows that the size principle does not generalize further. 

Since Example 7.6 does not exhibit the paradox and is not symmetric, Proposition 
7.6 is not a complete characterization. A list of all proper simple games with four or 
fewer players is given in the appendix along with the Shapley value ~ corresponding 
to all coalition structures,, Ko (~), and whether or not the game exhibits the paradox. 

Another interesting problem is to determine, if possible, a power index that has all 
the desirable properties of the Shapley value but that does not exhibit the paradox of 
smaller coalitions. 
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The most critical axiom of the Aumann-Dreze generalization of the Shapley value 
is A.3. 

A.3. ~p(v + u) = q~p(v) + ~p(u). 

This axiom is acceptable if and only if we assume that the c.s. 19 is fixed and that 
players in a coalition Pk E P cannot bargain on the basis of the value of coalitions not 
contained in Pk" This assumption is not appropriate for our model where the players 
are bargaining for a coalition structure and no c.s. is fixed. 

Another generalization of the Shapley value (which he defined only for the grand 
coalition) to the case of all coalition structures which is appropriate for monotonic 
simple games is as follows. 
(i) The Shapley value corresponding to the grand coalition is used as an a priori 

measure of power of the players. This is suggested by Shapley/Shubik [ 1954]. 
(ii) And within any coalition in a c.s., a player can expect to share in the payoff 

proportional to his power as defined in (i). This is suggested by Gamson [1961 ]. 
Assumptions (i) and (ii) define a unique value for all monotonic simple games which 
we denote by ~'.  

The (generalized) Shapley value ~'  is a function from II • G N to E n , i.e., a func- 
tion that associates with each game and a c.s. a payoff vector given by Expression (7.3) 
and 

 iO, ) 
i~_~, ~i(V ) " V(ek ) where Pk E Pis such that 

K 

�9 '(P, v) (j) = ] EPk ,  if]  is not a null player (7.13) 

0 i f / i s  a null player 

Note that ~'((N), v) = e~ ~N~(V ) = r = ((~1 (v) . . . . .  r A simple consequence of 
the definition of ~ '  is as follows. 

Proposition 7. 7. Let 1 ~ be a monotonic simple game. The P does not exhibit the para- 
dox of smaller coalitions w.r.t. ~' .  

Proof: This follows from Expression (7.13). 
In view of Corollary 7.5, we might be tempted to assert that Ko@')  D H t. However, 

the following example shows that it is not true. 

Example 7. 7. Consider the weighted majority game given in Example 7.5 [3 ;2,1,1,1 ]. 
Then ~'  is given by 7) 

7) When there is no doubt about the game v under consideration, we shall denote ~'(~, v) by 
~'(]7) which is consistent with the established notation. 
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(3/6, 1/6, 1/6, 1/6) 

(3/5, 1/5, 1/5, 0) 

dp'(p) = (3/4, 1/4, 0, 0) 

(0, 1/3, 1/3, 1/3) 

For all other c.s.'s, cI,'(p) can be determined by the symmetry of  players 2, 3, and 4. 
If is clear that Ko(~ ' )  = {(1) (234)}. Note that in this example t = 2, hence 
(1) (234) �9 11 t .  

Let 

if /9 = (1234) 

if P = (123) (4) 

if P = (12) (3) (4) or (12) (34) 

if/9 = (1) (234). 

s =  min ~ ~i(v), (7.14) 
REoJm i~__R 

and let 

[I s = (P E 11: P contains a coalition R E wm such that i~R ~i (v) = s). (7.15) 

Then we have the following important fact. 

Theorem 7.8. Let P be a proper monotonic simple game. Then K0(~ ' )  = l-I s. 

Proof: Denote ~'((N)) by r = (~bl . . . . .  Cn)" Let P1 E II s. Suppose P2 E II such that 
P2 domR (cI,') P1 for some R E P: such that R E W m . Then ~ ' (P2)  (i) > ~'(P1 ) (i) 
for all i E R .  Let T E  P1 be such that T E  W m and 2~ r = s. Since r is proper 

JET 
R n T :/: 0. Pick j E R n T. Then ~'(P1 ) q) = r Since j E R, ~b'(P2) q) = 
= r  ~" ~ )  > r  i.e., Z ~b; < s, a contradiction! Hence Ko(cb ') D Ho. 

" i~R " J iER " ~ 

Let PI E I1 s and P2 E 11 be such that P2 ~ [is" Then P1 dOmT(~') P2 where 

T E  P1 such that T E  W m and ~ ~b i =$ because ~(P1 ) (i) = r  for all i E T and 
i~T 

~'(P2)  (0 < r  for all i E T. Hence K o ( ~ ' )  C 11 s . [] 

(i) 8. Solutions with Respect to the Bargaining Set M 1 

The bargaining set was first introduced by Aumann/Maschler  [1964]. They defined 
several types of  bargaining sets. One of these, denoted by M~ i), was shown to be non- 
empty for every c.s. by Peleg [ 1967]. 

Let  x R denote a vector in E r where r = [ R I, whose elements are indexed by the 
players in R. Let x E I (P)  and let i and j be two distinct players in coalition Pk E P. 
An objection of i against j to x E I ( P )  is a vector)  R , where R is a coalition containing 
player i but not j, whose coordinates Yt satisfy Yi > xi '  Yl >~ Xl V I E  R and 

y~ = v(R) .  A counter-objection to this objection is a vector z D, where D is a coa- 
I~_R " 
lition containing player j but not i, whose coordinates z l satisfy z l >~ x t for each 1 E D, 
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zt >~Yl for each I E R  r and Z z l = v(D). 
lED 

x E l ( P )  is stable if for each objection to x, there is a counter-objection. The 
bargaining set corresponding to the c.s. P E l-l, denoted by MI i) (P) is the set of  all 
stable individually rational payoff  x E I (P ) ,  i.e., 

MIi)(P) = (x E I (P ) :  x is stable). (8.1) 

Theorem 8.1. Let F be an n-person cooperative game with side payments. Then 
M~ i) (P) :/= 0 for each PE II. 

Proof. See Davis/Maschler [ 1967] and Peleg [ 1967]. 
As a result II (M~ i)) = II. The bargaining set is a natural payoff  solution concept to 
study the solutions Jo and Ko for the following reasons: 
(i) the bargaining set for each c.s. consists of  payoffs that are stable in the sense 

of  objections and counter-objections. If for a particular c.s., a payoff  is not in 
the bargaining set, some player would have a justified objection (an objection 
that has no counter-objection) which when carried out would result in breakup 
of  the coalition structure. Hence we are not justified in using unstable payoffs 
corresponding to a c.s. to dominate another c.s. Also, 

(ii) the bargaining set is nonempty for each coalition structure. 
t (i) We shall now de ermine Ko(M 1 ) for all 3-person games with side payments. 

Consider the 3-person game given by N = (1,2,3}, 

v(1) = v(2) = v ( 3 ) =  0, v(12) = a, v(13) = b, v ( 2 3 ) =  c, 

and (8.2) 

v(123) = d, where O~<a ~<b ~<c andd>~ O. 

Theorem 8.2. Let F be a 3-person game as in (8.2) with d > (a + b + c)/2. 
(i) ]fd < c ,  then Ko(M~ i)) = ((1) (23)) 
(ii) I fd  = e, thenKo(M~ i)) = ((1) (23), (123)) 
(iii) I f d > c ,  thenKo(Mli) ) = ((123)). 

Proof: 
(i) In this case we have (a + b)/2 + c/2 < d < c/2 + c/2, hence a + b < c. The 

bargaining set is given by 

(o, 0, o) 

(0, a, 0) 

= (0, o, b) 

Conv{(0, c -- b, b), (0, a, c - a)) 

(0,  d / 2  - (b - -  a ) /2 ,  d / 2  + (b - -  a ) /2 )  

if P = (1) (2) (3), 

if ]9 = (12) (3), 

if/9 = (13) (2), 

if/9 = (1) (23), 

if P = (123) 

(8.3) 
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Clearly (1) (23) dom(M~ i)) (12) (3) and (1) (23) dom(M~ i)) (13) (2). Also since 
(0, c/2 -- (b --a)12, c/2 + (b -- a)12) E M~i)((1) (23)) and c > d ,  

(1) (23) dom(M~ i)) (123). The transition graph is shown in Figure 8.1. Hence 
Case (i) follows. 

(ii) In this case, the bargaining set is as in (8.3) except for c.s. (123) which is 

M~ i) ((123)) = M~i)((1) (23)). 

Therefore (ii) follows. (See Figure 8.2.) 
(iii) Case l ) c > a + b  

Here the bargaining set is as in (8.3) except for c.s. (123) which is given by 

M~i)((123)) = ( ( x t , x 2 , x 3 ) : X l  + x2 ~ a ,  x t  + x3 ~ b ,  x2 + x3 ~ c ,  and 

xt +x2 +x3 = d ) .  

For each (0, x2, c -- x2 ) E M~ i) ((1) (23)) where a ~< x2 < c -- b, we have 
((d - c)/3, x2 + (d - c)/3, c - - x2  + (d - c)/3) E M~i)((123)). Hence 
(123) dom(M~ i)) (1) (23). The transition digraph is shown in Figure 8.3. 

(iii) Case 2) c <~ a + b 
In this case the bargaining set is given by 

(0, o, o) if p = (1) (2) (3), 

(Pt, P2, 0) if P = (12)(3), 

M~i)(P) = (/71,0, p3) if P = (13) (2), (8.4) 

(0,p3,p3) if P = (1) (23), 

Co((123)) if P = (123). 

where pt = (a + b - c ) / 2 , p 2  = (a + c - -b ) /2 ,p3  = (b + c - -a) /2 ,  and 

Co((123)) = ( ( x l , x 2 , x 3 ) :  x l  + x2 >~a, x l  + x3 >~b, x2 + x3 >~c, 

andxt +x2 +x3 =d}.  

Letp = (Pl +P2 +P3),  then clearly, 

(p~ + ( d - p ) / 3 , p 2  + ( d - - p ) / 3 , p 3  + ( d - - p ) / 3 ) E  M~i)((123)) 

(i) every Hence c.s. (123) dominates (w.r.t. Mt ) other c.s. This case completes the 
proof of the theorem. [] 

Theorem 8.3. Let F be a 3-person game as in (8.2) with d = (a + b + c)/2. 
(i) If c ~< a + b {(12) (3), (13) (2), (1) (23), (123)). 
(ii) I f c > a + b  - ( (1 ) (23 ) ) .  

Proof: 
(i) In this case, the bargaining set is as in (8.4) with MIi)((123)) = (Pl, P2, P3). The 

result clearly follows. 
(ii) In this case, the bargaining set is as in (8.3). Since d < c, the result follows. [] 
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(i) (2)(3) 

(12){3) ~ ( 1 2 3 )  

(13)( - v 23) 

Fig. 8.1: The transition digraph in Theorem 8.2, (i), and in Theorem 8.4, (ii) 

(12) (3) 

(i) (2) (3) 

�9 (123) 

(13) (2) : ~ . (i)(23) 

Fig. 8.2: The transition digraph in Theorem 8.2, (ii) 

(i) (2)(3) 

(12) (3) ~ - ( 1 2 3 )  

(13) (2) (i) (23) 

Fig. 8.3: The transition digraph in Theorem 8.2, (iii) case 1) 

Theorem 8.4. Let F be a 3-person game as in (8.2), with d < (a + b + c)/2. 
(i) I f c  ~<a + b then Ko(id~ i)) = ((12) (3), (13) (2), (1) (23)). 

(ii) I f c  > a  + b then Ko(M~ i)) = ((1) (23)). 

~oof: 
(i) In this case, the bargaining set is as in (8.4) except for c.s. (123) for which it is 

given by 



158 P.P. Shenoy 

(ii) 

I (Px + (d--p)/3,p2 + (d--p)/3,p3 + (d-p)/3) 
i f 2c -a -b<~d  

M{ i) ((123)) = 3  (0, d/2 -- (b --a)/2, d/2 + (b --a)/2) (8.5) 

[ i f b - a ~ d < 2 e - a - b  
(0, 0,d)  i f d < b  --a. 

In all cases, the transition graph is presented in Figure 8.4. Therefore (i) follows. 
In this case the bargaining set is as in (8.3) except for c.s. (123) for which the 
bargaining set is as in (8.5). The transition graph is shown in Figure 8.1. Hence 
the result follows. [] 

/~(3) 

(12) (3) -- / ~ ~ (123) 

/ . . J \ /  
(13) (2) ~ ~(i) (23) 

Fig. 8.4: The transition graph in Theorem 8.4, (i) 

Since Theorems 8.2, 8.3 and 8.4 cover all cases, we have proved the following. 

Theorem 8.5. Let F be a 3-person game asin (8.2). Then Ko(M~ i)) 4: 0. 
For every P 6  II, i fx  EI(P) belongs to Co(P), then no player can have an objection 
against another player. Thus if Co(P) 4: 0, Co(P) c M~i)(P). Hence the p.s.c. M~ i) 
satisfies the hypothesis of Corollary 6.2. So we obtain the following. 

Lemma 8. 6. Let F be an n-person game. If II (Co) 4: O then Ko (M~ i)) 4: O. In fact 

Ko(M  
Proof: This is a consequence of Corollary 6.2 and Theorem 6.3. 

.,1(i) NO general existence theorem for KoU~ 1 is known at this time. Example 8.1 illus- 
for Ko(M{ i)) which is due to a "flaw" in the properties of the trates a pathology 

bargaining set. 

[] 

Example 8.1. Let P be a 3-person veto player game with 

v(12) = v(13) = v(123) = 1, v(R) = 0 for all other R CN.  

Observe that player 1 is a veto player because all coalitions that doe not contain 
player 1 are losing coalitions. However, player 1 is not a dictator since he needs either 
player 2 or player 3 (or both) to form a winning coalition. The bargaining set of this 
game is given by 
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(1, 0, 0) if P = (123), (12) (3) or (13) (2) 

M~i)(P) = (0, 0, 0) for all other P in II. 

Note that in every c.s. that contains a coalition which has a positive value, at least one 
player in the coalition gets zero payoff in the bargaining set. As a result, due to Condi- 
tion (3.5) in the definition of domination, no c.s. dominates another c.s. Hence 
K0 i)) = n.  

The above example exhibits a flaw in the properties of the bargaining set. E.g., in 
the c.s. (12) (3) player 2 gets zero payoff in the bargaining set. This is because player 2 
has no 'bargaining power' at all vis-a-vis player I. Since there are no coalitions with a 
positive value that contains player 2 but not player 1, player 2 cannot even object! 
However the payoff in the bargaining is counter-intuitive because we could argue: Why 
should player 2 enter into a coalition with player 1 if his share of the resulting coali- 
tional value is the same as what the player could have obtained had he been in a coali- 
tion by himself?. In this respect, we could say that the bargaining set is derived entirely 
from the bargaining positions of the players in the process of coalition formation in 
contrast with the Shapley value which is derived entirely from the characteristic 
function of the game. These two p.s.c.'s reflect two extreme view points in looking at 
solutions of cooperative games in characteristic function form. A major research prob- 
lem is to define a p.s.c, that exhibits both the strategic value and the bargaining power 
of the players. 

One method of attacking this problem in the case of the bargaining set is to regard 
the bargaining set as an idealization (of the bargaining process) and relax the definition 
of an objection by e, where e is a small positive real number. More formally, let 
x E l ( P )  and i and /be  two distinct players in a coalition P k E P. An e-ob/ecth)n  of 
i against ] is a vector y R ,  where R is a coalition containing player i but not/ ,  whose 
coordinatesy t satisfy y i > x  i + e, Y t  >~Xl for all l ER,  and t~R  Yl = v(R). A counter- 

objection to this e-objection is defined as before. We say x EI(IV) is e-stable if for 
each e-objection in x, there is a counter-objection. The e-bargaining set, denoted by 
M~i?e, corresponding to c.s. i v EII  is the set of all e-stable E l ( i v ) ,  x i.e., 

M~i,)(P) = (x EI(/)): x is e-stable}. (8.6) 

We could regard e as a 'sacrifice' each player is willing to make (if necessary) for 
coalitional stability. 

Note that the results in Theorems 8.2, 8.3, 8.4 and 8.5 as well as Lemma 8.6 remain 
unchanged if we replace M~ i) by Mti,) e. 

E x a m p l e  8.2.  Consider the game in Example 8.1. The e-bargaining set is given by 

S) Denotestheset{(x l, x=, x3) : xl  = l -- x= -- x a, O ~ x 2 <. e, O ~ x 3 ~ e}. 
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(1 --x2 --x3, O~<x2 ~<e, O~<x3 ~<e) 

(1 -x2,0~<x2 ~<e, O) 

M~',', (P)= (1--x3,0,  O<~x3<~e) 
/ - - t  

(o, o, o) 

it "a) P = (123) 

if P =(12)(3) 

if P =(13)(2) 

for all other P in H. 

It is clear that Ko (M~i,) ) = {(123), (12) (3), (13) (2)} which is more intuitive than 
ro(M~ i) ) = n.  

Example 8.3. (The Chemical Company Game. See Anderson/Traynor [1962]). Two 
chemical companies C1 and C2 supply two fabricating companies F~ and F:.  The 
permissible coalition structures are: 

PI = (C1) (C~) (F~) (F21, 

P3 = (ClF2) (C2) (Fl), 

Ps = (e l )  (C2F2) (F~), 

P7 = (ClF2) (C2F1). 

The respective payoffs (profits) to these coalitions in the particular coalition structures 
a r e :  

Px: 25,15, 75,100. 

P3 500,30,85. 

Ps:30,425,90. 

PT: 700,300. 

P2 =(C1F1)(C2)(F2), 

P4 = (Cl)(C2F1)(F2), 

P6 = (ClFx)(C2F2), 

This"partitionfuncfion"inducesthe charac~risticfunction: 

v(Cl) = 25, v(C2) = 15, v(F1) = 75, v(F2) = 100, v(Ca, F1) = 300, 

v(CI,F2) = 500, v(C2, Fl)  = 200, v(C2, F2)= 425. 

The bargainingset M~i) is ~ven by 

(25,15,75,100) if P = P1 

(115<xl  <225 ,15 ,300-x1 ,100)  i f P = P 2  

(90<xl  ~< 225,15,75,500--xl)  if P = P3 

(25,15 ~x2 ~ 125,200-x2,100) if P = P4 
M~i)(p) = 

(25,15 ~x2 ~ 125,75,425--x2) if P = Ps 

(xa,x2,300--Xl,425--x2) if P = P6 

where x~,x: are asin Figure8.5. 

(yl,y2,200--y2,500--yl) if P = P7 

whereyl,y2are asin Figure 8.6. 

P2:300,25,110. 

P4: 28,200, 105. 

P6:400,600. 
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~2 

125 

15, 

/ 
! I I I 

90 115 200 225 
~-- Yl 

Fig. 8.5: The bargaining set --a_--_M~,)(/~6 ) for 
the chemical company game 

x 2 

I !  ! 
90 115 225 

x l  Fig. 8.6: The bargaining set ' J; - - - -  M~')[ VT)for 
the chemical company game 

The transition digraph is shown in Figure 8.7. Hence K0(M~ i)) = {(C1FI ) (C2F2), 
(CIF2) (C2F, )}. Pl 

P 7 

P4 P5 

Fig. 8.7: The transition digraph of  the chemical company game 
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9. Some Modifications of the Coalition Structure Model 

In this section, we look at some modifications of the domination relation in the 
abstract game (II(S), dom(S)). We def'me two other domination relations one of 
which is stronger than dom(S) and the other weaker than dom(S). 

Definition 9.1. Let Pl ,  P2 E l i ( S )  and S be a p.s.c. Then P1 weakly dominates P2, 
denoted by P1 w-dom(S) Pz, iff 

for eachy E S (P2), 3 a nonempty R E P1 and x E S (P I ) 

such thatx i >Yi for all i ER. 

(9.1) 

Definition 9.2. Let PI, P2 E II(S) and S be a p.s.c. Then P1 strongly dominates P2, 
denoted by P1 s-dora(S) P2, iff 3 a nonempty R E P1 and x E S(PI ) such that for 
ally E S(P~), x i >Yi  for all i E R .  

The following relations are direct consequence of Definitions 3.6, 9.1 and 9.2. 

If P1 s-dora(S) P2, then P1 dom(S) P2- (9.2) 

If P1 dom(S) P2, then P1 w-dom(S) P2- (9.3) 

Let KO, w (S)  and KO,s(S ) denote the cores of the abstract games (II(S), w-dom(S)) 
and (H(S), s-dom(S)) respectively. As a consequence of Relations (9.2) and (9.3), we 
have 

Ko,s(S)  D Ko (S)  D KO, w (S). (9.4) 

Also, if S is a p.s.c, such that for each P E H, S(P) is either a single point set in 
E n or an empty set, then 

K0,s (S) = Ko (S) = K0, w (S). (9.5) 

Appendix: The Aumann-Dreze Generalization of the Shapley Value for all Simple 
Games with Four or Fewer Players 

The table on the following page contains all distinct proper simple games of four 
or fewer players excluding dummies. All winning coalitions are listed - the minimal 
winning coalitions are listed first and separated from the rest by a semicolon. The 
weighted voting representation given in column 4 are the simplest ones. The Shapley 
value (D of a c.s. depends only on the winning coalition contained in the c.s. The 
Shapley value of all c.s.'s containing winning coalitions, in the sequence as in column 
3, is given in column 5. The Shapley value of a c.s. not containing any winning coali- 
tion is zero for each player and therefore is not given in column 5. Column 6 contains 
all c.s.'s in Ko(~) identified by the winning coalition it contains. The last column 
indicates whether the game exhibits the paradox of smaller coalitions or not. 
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