Practical Aspects of Solving Hybrid Bayesian Networks Containing Deterministic Conditionals*

Prakash P. Shenoy
School of Business
University of Kansas
Lawrence, KS 66045-7601 USA
pshenoy@ku.edu

—

Rafael Rumí and Antonio Salmerón
Dept. Statistics and Applied Mathematics
University of Almería
E-04120 Almería, Spain
{rrumi, antonio.salmeron}@ual.es

January 10, 2013

*Preliminary versions of this paper were presented at the ISDA’2011 conference and PGM’2012 workshop
Contents

1 Introduction 3

2 MTEs and MOPs 4

3 A PERT Hybrid Bayesian Network 6
 3.1 MTE Representation of Conditionals 8
 3.2 MOP Representation of Conditionals 10
 3.3 Hypercube vs. Hyper-rhombus MOP Representations of Gaussian PDFs 11
 3.3.1 Using Hypercube MOPs 11
 3.3.2 Using Hyper-rhombus MOPs 13
 3.3.3 Comparison 14

4 Re-approximation of MOPs/MTEs 16
 4.1 Re-approximation by Dropping Pieces 17
 4.2 Re-approximation of MOPs using LIP with Chebyshev points 17
 4.3 Re-approximation of MTEs Using Numeric Least Squares 19

5 Solving the PERT Hybrid Bayesian Network 21
 5.1 Solution Using Hypercube MOPs 21
 5.2 Solution using MTEs 27
 5.3 Solution Using Simulation 29

6 Summary and Conclusions 29
Practical Aspects of Solving Hybrid Bayesian Networks Containing Deterministic Conditionals

Abstract

In this paper we discuss some practical issues that arise in solving hybrid Bayesian networks that include deterministic conditionals for continuous variables. We show how exact inference can become intractable even for small networks, due to the difficulty in handling deterministic conditionals (for continuous variables). We propose some strategies for carrying out the inference task using mixtures of polynomials and mixtures of truncated exponentials. Mixtures of polynomials can be defined on hypercubes or hyper-rhombuses. We compare these two methods. A key strategy is to re-approximate large potentials with potentials consisting of fewer pieces and lower degrees/number of terms. We discuss several methods for re-approximating potentials. We illustrate our methods in a practical application consisting of solving a stochastic PERT network.

Keywords: hybrid Bayesian networks; mixtures of polynomials; mixtures of truncated exponentials; deterministic conditionals;

1 Introduction

Hybrid Bayesian networks are Bayesian networks (BNs) that include a mix of discrete and continuous random variables. A random variable is discrete if its state space is countable, and is continuous otherwise. In a BN, each variable is associated with a conditional distribution for it given each state of its parents. A conditional distribution for a variable is said to be deterministic if its variances are all zeroes (for each state of its parents).

The first proposal of an exact algorithm for hybrid BNs was developed for the case in which the joint distribution of all variables is a mixture of Gaussians (MoG) [1]. Some limitations of the MoG model are that it is restricted to network topologies in which discrete variables do not have continuous parents, and each conditional for a continuous variable has to be a conditional linear Gaussian, i.e., a Gaussian distribution whose mean is a linear function
of its continuous parents, and whose variance is a constant. Also, during the solution phase, continuous variables have to be marginalized before discrete ones and this restriction can lead to large cliques [2], and consequently large memory storage requirements.

A more general technique, based on the use of mixtures of truncated exponentials (MTEs), was proposed in [3]. The MTE model does not impose any topological restrictions on its networks, and is compatible with any efficient algorithm for exact inference that requires only the combination and marginalization operations, such as the Shenoy-Shafer [4, 5] and variable elimination methods [6]. Furthermore, MTEs have shown a remarkable ability for fitting many commonly used univariate probability density functions (PDFs) [7].

The most recent proposal for dealing with hybrid BNs is based on the use of mixtures of polynomials (MOPs) [8]. Like MTEs, MOPs have high expressive power, but the latter are superior in dealing with deterministic conditionals for continuous variables [5, 8]. Also, a MOP approximation of a PDF can be easily found using Lagrange interpolating polynomial with Chebyshev points [9]. Both MTEs and MOPs can be seen as instantiations of a more general framework known as mixtures of truncated basis functions (MoTBFs), recently introduced in [10].

In this paper, we discuss some practical issues that have to be addressed in order to make inference in hybrid BNs tractable when deterministic conditionals are present. A key strategy is re-approximation of MOPs (MTEs) with fewer pieces and lower degrees (fewer terms) during the solution phase. We compare the sizes, computation time and accuracy of MOPs defined on hypercubes and hyper-rhombuses. We compare the performance of MOPs and MTEs in this context, through an example arising from a stochastic PERT network [11].

2 MTEs and MOPs

We will use uppercase letters to denote random variables, and boldfaced uppercase letters to denote random vectors, e.g. $\mathbf{X} = \{X_1, \ldots, X_n\}$, and its state space will be written as $\Omega_{\mathbf{X}}$. Lowercase letters x (or \mathbf{x}) will denote elements of $\Omega_{\mathbf{X}}$ (or $\Omega_{\mathbf{x}}$). The MTE model [3] is defined as follows.

Definition 1. Let \mathbf{X} be a mixed n-dimensional random vector. Let $\mathbf{Y} = (Y_1, \ldots, Y_d)^T$ and $\mathbf{Z} = (Z_1, \ldots, Z_c)^T$ be its discrete and continuous parts re-
spectively. A function $f : \Omega_X \mapsto \mathbb{R}_0^+$ is a mixture of truncated exponentials (MTE) potential if for each fixed value $y \in \Omega_Y$ of the discrete variables Y, the potential over the continuous variables Z is defined as:

$$f(z) = a_0 + \sum_{i=1}^{m} a_i \exp \left\{ b_i^T z \right\},$$

(1)

for all $z \in \Omega_Z$, where $a_i \in \mathbb{R}$ and $b_i \in \mathbb{R}^c$, $i = 1, \ldots, m$. We also say that f is an MTE potential if there is a partition D_1, \ldots, D_k of Ω_Z into hypercubes and in each one of them, f is defined as in Eq. (1). In this case, we say f is a k-piece, m-term MTE potential.

Mixtures of polynomials (MOPs) were initially proposed as modeling tools for hybrid BNs in [8]. The original definition is similar to MTEs, in the sense that they are piecewise functions defined on hypercubes. A more general definition was given in [9], where the hypercube condition is relaxed. The details are as follows.

Definition 2. Let X, Y and Z be as in Definition 1. A function $f : \Omega_X \mapsto \mathbb{R}_0^+$ is a mixture of polynomials (MOP) potential if for each fixed value $y \in \Omega_Y$ of the discrete variables Y, the potential over Z is defined as:

$$f(z) = P(z),$$

(2)

for all $z \in \Omega_Z$, where $P(z)$ is a multivariate polynomial in variables $Z = (Z_1, \ldots, Z_c)^T$. We also say that f is a MOP potential if there is a partition D_1, \ldots, D_k of Ω_Z into hyper-rhombuses and in each one of them, f is defined as in Eq. (2).

The fact that the elements in the partition are hyper-rhombuses, means that for any ordering of the variables Z_1, \ldots, Z_c, for each D_i it holds that $l_{1i} \leq z_1 \leq u_{1i}$, $l_{2i}(z_1) \leq z_2 \leq u_{2i}(z_1), \ldots, l_{ci}(z_1, \ldots, z_{c-1}) \leq z_c \leq u_{ci}(z_1, \ldots, z_{c-1})$, where l_{1i} and u_{1i} are constants, and $l_{ji}(z_1, \ldots, z_{j-1})$ and $u_{ji}(z_1, \ldots, z_{j-1})$ are linear functions of z_1, \ldots, z_{j-1} for $j = 2, \ldots, c$, and $i = 1, \ldots, k$.

MTEs and MOPs are closed under multiplication, addition, and integration. However, integrating over hyper-rhombuses is in general more complex than over hypercubes. The advantage is that using hyper-rhombuses, it is easier to represent models like the conditional linear Gaussian, where the conditional distribution of a variable may depend on the value of its continuous parents in the network. Unfortunately, MTEs cannot be defined on hyper-rhombuses, as the integration operation would not remain closed for that class.
3 A PERT Hybrid Bayesian Network

We will illustrate the inference process in hybrid BNs using a *stochastic PERT network* [11]. This problem has previously been addressed using BNs [12], but the approach we propose here is more flexible and general, as it allows to compute the full distribution of the variables of interest, and not only their expectations and variances. PERT stands for *Program Evaluation and Review Technique*, and is one of the commonly used project management techniques [13]. PERT networks are directed acyclic networks where the nodes represent duration of activities and the arcs represent precedence constraints in the sense that before we can start any activity, all the parent activities have to be completed. The term *stochastic* refers to the fact that the duration of activities are modeled as continuous random variables.

Fig. 1 shows a PERT network with 5 activities A_1, \ldots, A_5. Nodes S and F represent the start and finish times of the project. The links among activities mean that an activity cannot be started until after all its predecessors have been completed. Assume we are informed that the durations of A_1 and A_3 are positively correlated, and the same is true with A_2 and A_4. Then, this PERT network can be transformed into a BN as follows.

Let D_i and C_i denote the duration and the completion time of the activity i, respectively. The activity nodes in the PERT network are replaced with activity completion times in the BN. Next, activity durations are added with a link from D_i to C_i, so that each activity will be represented by two nodes, its duration D_i and its completion time C_i. Notice that the completion times of the activities which do not have any predecessors will be the same as their durations. Hence, activities A_1 and A_2 will be represented just by their durations, D_1 and D_2. As A_3 and A_1 have positively correlated durations, a link will connect D_1 and D_3 in the BN. For the same reason, another link will connect D_2 and D_4. The completion time of A_3 is $C_3 = D_1 + D_3$. Let $C_{23} = \max\{D_2, C_3\}$ denote the completion time of activities A_2 and A_3. The
The completion time of activity A_5 is $C_5 = D_1 + D_5$, and for activity A_4, it is $C_4 = C_{23} + D_4$.

We assume that the project start time is zero and each activity is started as soon as all the preceding activities are completed. Accordingly, F represents the completion time of the project, which is the maximum of C_5 and C_4. The resulting PERT BN is given in Fig. 2 (left).

Notice that the conditionals for the variables C_3, C_{23}, C_4, C_5 and F are deterministic, in the sense that their conditional distributions given their parents have zero variances. On the other hand, variables D_1, \ldots, D_5 are continuous random variables, and their corresponding conditional distributions are depicted next to their corresponding nodes in Fig. 2. The parameters μ (mean) and σ^2 (variance) of the Normal distribution are in units of days and days2, respectively. The parameter μ (mean) of the exponential distribution is in units of days.

The problem of inference in hybrid BNs with deterministic conditionals
has been studied in [5]. The first problem we find when attempting to carry out inference in the network in the left panel of Fig. 2 is concerned with variables C_{23} and F, as their deterministic conditional is the max function, which is not easy to use directly in probabilistic inference. However, we can convert the max deterministic function to a linear function [5]. Consider the situation in the left panel of Fig. 3. We can remove the max by introducing a discrete indicator variable A with two states a and na, which denote whether $D_2 \geq C_3$ or $D_2 < C_3$, respectively, obtaining the equivalent representation displayed in the right hand side of Fig. 3. After applying this transformation to C_{23} and F in the BN in the left panel of Fig. 2, we obtain the hybrid BN shown in the right hand side of Fig. 2. Notice that it is hybrid because now there are both discrete and continuous variables in the same network.

3.1 MTE Representation of Conditionals

MTEs can be used to accurately approximate several univariate distributions, including the ones in the PERT hybrid BN [7]. The approximation of conditional densities using MTEs is more difficult, as the hypercube condition in the definition of an MTE function means that the value of a continuous parent has to be a constant [14]. Therefore, this implies that a conditional density is approximated by MTEs by partitioning the state space of the continuous parents into hypercubes, and then fitting a univariate MTE in each hypercube. The resulting conditional MTE density is called a mixed tree [15].

An additional problem is found when attempting to deal with deterministic conditionals. MTEs are not closed with respect to the convolution operation required by the sum conditional. Consider two independent random variables $X_1, X_2 \sim \text{Exp}(\mu = 1)$ and $Y = X_1 + X_2$. The marginal PDF of Y is $\text{Gamma}[r = 2, \mu = 1]$, which is not an MTE function. The reason is that such a marginal is obtained through the so-called convolution operation as

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X_1}(x_1) f_{X_2}(y - x_1) \, dx_1 = \int_{0}^{y} e^{-x_1} e^{-(y-x_1)} \, dx_1 = ye^{-y} \quad (3)$$

for $y > 0$, which is not an MTE according to Definition 1. This is a consequence of the fact that even though $f_{X_2}(x_2)$ is defined on hypercubes, $f_{X_2}(y - x_1)$ is no longer defined on hypercubes, and therefore, the limits of integration in Eq. (3) are not all constants.

One solution to this problem is to approximate the function $f_{X_2}(y - x_1)$ on hypercubes using a mixed tree approach as described by [15]. We will
illustrate the mixed tree approach for a slightly different example taken from the PERT hybrid BN in Fig. 2 (right).

Consider a part of the hybrid BN shown in Fig. 2 formed by variables D_1, D_3 and C_3. $D_1 \sim N(3,1)$, $D_3|d_1 \sim N(6+2d_1,2^2)$ and $C_3 = D_1 + D_3$. If $Z \sim N(0,1)$, $f(\cdot)$ is an MTE approximation of the PDF of Z, and $Y = \sigma Z + \mu$, where σ and μ are real constants, then $Y \sim N(\mu, \sigma^2)$, and an MTE approximation of the PDF of Y is given by $g(y) = \frac{1}{|\sigma|}f\left(\frac{y-\mu}{\sigma}\right)$. Suppose $f(\cdot)$ is a 2-piece MTE approximation of the PDF of $N(0,1)$ on the domain $(-3,3)$, where the two pieces are $(-3,0)$ and $[0,3)$ [7]. Then, $g_1(d_1) = f(d_1 - 3)$ is an MTE approximation of the PDF of $D_1 \sim N(3,1)$ on the domain $(0,6)$. However, $g_2(d_1, d_3) = f(d_3-\frac{6-2d_1}{2})/2$ is not an MTE since it would be defined on regions such as $-3 < \frac{d_3-6-2d_1}{2} < 0$, which are not hypercubes. So we partition the domain of D_1 into equal-size intervals, and assume that d_1 is a constant in each interval equal to the mid-point of the interval. Thus, $g_{2c}(d_1, d_3)$, as described in Eq. (4), is a 3-point mixed tree MTE approximation of $g_2(d_1, d_3)$ representing the conditional PDF of D_3 given d_1.

$$g_{2c}(d_1, d_3) = \begin{cases}
 f(d_3-\frac{8}{2})/2 & \text{if } 0 < d_1 < 2, \\
 f(d_3-\frac{12}{2})/2 & \text{if } 2 \leq d_1 < 4, \\
 f(d_3-\frac{16}{2})/2 & \text{if } 4 \leq d_1 < 6.
\end{cases} \tag{4}$$

Notice that this mixed-tree method can also be used with MOPs. Next, we wish to compute the marginal PDF of C_3. The conditional associated with C_3 is $g_3(d_1, d_3, c_3) = \delta(c_3 - d_1 - d_3)$, where δ is the Dirac delta function. To compute the marginal of C_3, we first marginalize D_3 and then D_1. The result after marginalizing D_3 is $g'_3(d_1, c_3) = \int_{-\infty}^{\infty} g_{2c}(d_1, d_3) \delta(c_3 - d_1 - d_3) dd_3 = g_{2c}(d_1, c_3 - d_1)$, which represents the conditional of C_3 given d_1.

Now we notice that $g'_3(d_1, c_3)$ is not defined on hypercubes anymore since we have regions such as $a \leq c_3 - d_1 < b$, where a and b are constants. So we approximate $g'_3(d_1, c_3)$ by $g_{5c}(d_1, c_3)$ using mixed trees as follows:

$$g_{5c}(d_1, d_3) = \begin{cases}
 g_{2c}(1, c_3 - 1) & \text{if } 0 < d_1 < 2, \\
 g_{2c}(3, c_3 - 3) & \text{if } 2 \leq d_1 < 4, \\
 g_{2c}(5, c_3 - 5) & \text{if } 4 \leq d_1 < 6.
\end{cases} \tag{5}$$

Notice that $g_{5c}(d_1, c_3)$ is an MTE function since it is defined on hypercubes. Next we marginalize D_1 as follows (resulting in the marginal PDF
\[g_{6c}(\cdot) \text{ of } C_3: \]
\[g_{6c}(c_3) = \int_{-\infty}^{\infty} g_1(d_1) g_{5c}(d_1, c_3) \, dd_1. \quad (6) \]

Since MTEs are closed under multiplication and integration, \(g_{6c}(\cdot) \) is an MTE function. A cost of the mixed-tree approach to maintain the hypercube nature of the pieces is the increase in the number of pieces. Thus, if \(f(\cdot) \) is a 1-piece MTE approximation of the PDF of \(N(0, 1) \), then \(g_1(d_1) \) is a 1-piece MTE potential, \(g_{2c}(d_1, d_3) \) is a 3-piece MTE potential and \(g_{5c}(d_1, c_3) \) is a 3-piece MTE potential. Another cost is loss of accuracy. We have used 3-point mixed trees for our illustration. We could use more points to improve accuracy of the computed potentials, but this would mean more pieces. We will discuss this in more detail in Section 3.3 for the case of MOPs.

3.2 MOP Representation of Conditionals

The problem of fitting univariate and multi-variate PDFs using MOPs was studied in [8] using the Taylor series approximation of differentiable functions. More recently, the ability of MOPs to fit multivariate conditional linear Gaussian distributions was significantly improved by means of allowing the functions to be defined into hyper-rhombuses rather than into hypercubes [9]. Also, an improved method for finding MOP approximations based on Lagrange interpolating polynomials with Chebyshev points was proposed in [9].

To illustrate this improvement, consider the part of the hybrid BN shown in Fig. 2 formed by variables \(D_1, D_3 \) and \(C_3 \). Suppose \(f(\cdot) \) is a 2-piece, 3-degree MOP approximation of the PDF of \(N(0, 1) \) on the domain \((-3, 3)\) [9]. Then, \(g_1(d_1) = f(d_1 - 3) \) is a 2-piece, 3-degree MOP approximation of the PDF of \(D_1 \sim N(3, 1) \) on the domain \((0, 6)\). Finally, \(g_2(d_1, d_3) = f(\frac{d_3 - 6 - 2d_1}{2})/2 \) is a 2-piece, 3-degree MOP approximation of the conditional PDF of \(D_3 \) given \(d_1 \). Notice that \(g_2(d_1, d_3) \) is defined on hyper-rhombuses, e.g., \(-3 < \frac{d_3 - 6 - 2d_1}{2} < 0\), etc, and not on hypercubes.

Unlike MTEs, MOPs are closed under the operations required for sum conditionals. Thus, after the elimination of \(D_3 \), \(g_5(d_1, c_3) = g_2(d_1, c_3 - d_1) \) is a MOP, and after the elimination of \(D_1 \), \(g_6(c_3) = \int_{-\infty}^{\infty} g_1(d_1) g_5(d_1, c_3) \, dd_1 \) is also a MOP. So in the case of MOPs, we have a choice of using MOPs defined on hypercubes (using mixed trees) or on hyper-rhombuses. In the next subsection, we compare the two alternatives in terms of the sizes of
MOP potentials (pieces and degrees), computation time, and accuracy of resulting MOP potentials. All computations were done in Mathematica® v. 8.0.4, running on an Apple iMac with 3.4 GHz Intel Core i7 processor and 16 GB memory.

3.3 Hypercube vs. Hyper-rhombus MOP Representations of Gaussian PDFs

In order to compare the hypercube and the hyper-rhombus approximations of Gaussian PDFs, we do a small experiment. Consider again the BN formed by D_1, D_2 and C_3. We will represent the PDFs of D_1 and D_3 using hypercubes and hyper-rhombuses. We will compute the marginal PDFs of D_3 and C_3, and compare the sizes of resulting MOP marginals, time required for the computation of marginals, and the quality of the approximation.

3.3.1 Using Hypercube MOPs

We start with $f(z)$, a 2-piece, 3-degree MOP approximation of the PDF of $N(0,1)$ on the interval $(-3,3)$ [8]. Then as discussed before, $g_1(d_1) = f(d_1 - 3)$ is a 2-piece, 3-degree MOP approximation of the PDF of $N(3,1)$ on $(0,6)$, and $g_{2c}(d_1, d_3)$ as defined in Eq. (4) is a 6-piece, 3-degree hypercube MOP approximation of the conditional PDF of D_3 given D_1. The marginal PDF of D_3 is given by

$$g_{4c}(d_3) = \int_{-\infty}^{\infty} g_1(d_1) g_{2c}(d_1, d_3) \, dd_1. \quad (7)$$

It takes approximately 1.41 seconds to compute the integral above and results in a 8-piece, 3-degree MOP approximation of the PDF of D_3 on the interval $(2,22)$. The exact marginal distribution of D_3 is $N(12,8)$. A plot of g_{4c} overlaid on the plot of the PDF of $N(12,8)$ truncated to $(2,22)$ is shown at the left in Fig. 4.

We will measure the accuracy of a PDF with respect to another defined on the same domain by four different measures, the Kullback-Leibler (KL) divergence, maximum absolute deviation, absolute error in the mean, and absolute error in the variance. These measures are defined as follows (see [9] for further details).

If f is a PDF on the interval (a,b), and g is a PDF that is an approximation of f such that $g(x) > 0$ for $x \in (a,b)$, then the KL divergence between
Figure 4: Left: A plot of $g_4c(\cdot)$ (blue) overlaid on the PDF of $N(12, 8)$ truncated to $(2, 22)$ (red). Right: A plot of $g_4(\cdot)$ (blue) overlaid on the PDF of $N(12, 8)$ truncated to $(0, 24)$ (red).

f and g, denoted by $KL(f, g)$, is defined as

$$KL(f, g) = \int_a^b \ln \left(\frac{f(x)}{g(x)} \right) f(x) \, dx.$$ \hfill (8)

$KL(f, g) \geq 0$, and $KL(f, g) = 0$ if and only if $g(x) = f(x)$ for all $x \in (a, b)$.

The maximum absolute deviation between f and g, denoted by $MAD(f, g)$, is given by:

$$MAD(f, g) = \sup \{|f(x) - g(x)| : a < x < b\}. \hfill (9)$$

The absolute error of the mean, denoted by $AEM(f, g)$, and the absolute error of the variance, denoted by $AEV(f, g)$, are given by:

$$AEM(f, g) = |E(f) - E(g)|, \quad AEV(f, g) = |V(f) - V(g)|, \hfill (10)$$

where $E(\cdot)$ and $V(\cdot)$ stand for expected value and variance of a PDF.

The goodness of fit measures for g_4c vs. f_D, the PDF of $N(12, 8)$ truncated to $(2, 22)$, are as follows: $KL(f_D, g_{4c}) \approx 0.0082$, $MAD(f_D, g_{4c}) \approx 0.0092$, $AEM(f_D, g_{4c}) \approx 0.0$, $AEV(f_D, g_{4c}) \approx 1.17$.

Next, we compute the PDF of C_3. After marginalization of D_3, we have $g_5'(d_1, c_3) = g_2c(d_1, c_3 - d_1)$, which is not defined on hypercubes. So we approximate g_5' by $g_{5c}(d_1, c_3)$ as defined in Eq. (5). After marginalization of D_1, we get $g_{6c}(c_3)$, which is a 6-piece, 3-degree MOP approximation of the PDF of C_3 defined on the domain $(3, 27)$. It takes approximately 1.31 seconds to compute $g_{6c}(\cdot)$. The exact marginal distribution of C_3 is $N(15, 13)$.

12
A plot of g_{6c} overlaid on the plot of the PDF of $N(15, 13)$ truncated to $(3, 27)$ is shown at the left in Fig. 5.

The goodness of fit measures for g_{6c} vs. f_{C3}, the PDF of $N(15, 13)$ truncated to $[3, 27]$, are as follows: $KL(f_{C3}, g_{6c}) \approx 0.0480$, $MAD(f_{C3}, g_{6c}) \approx 0.0360$, $AEM(f_{C3}, g_{6c}) \approx 0.0$, $AEV(f_{C3}, g_{6c}) \approx 2.67$.

3.3.2 Using Hyper-rhombus MOPs

As in the case of hypercubes, we start with $f(\cdot)$, a 2-piece, 3-degree MOP approximation of the PDF of $N(0, 1)$. Then $g_1(d_1) = f(d_1 - 3)$ is a MOP approximation of the PDF of D_1, and $g_2(d_1, d_3) = f\left(\frac{d_3 - 6 - 2d_1}{2}\right)/2$ is a hyper-rhombus MOP approximation of the conditional PDF of $D_3|d_1$. The marginal PDF of D_3 is computed as

$$g_4(d_3) = \int_{-\infty}^{\infty} g_1(d_1) g_2(d_1, d_3) \, dd_1. \quad (11)$$

It takes approximately 3.44 seconds to do this integral, and $g_4(\cdot)$ is computed as a 4-piece, 7-degree MOP on the domain $(0, 24)$. The exact marginal distribution of D_3 is $N(12, 8)$. A plot of g_4 overlaid on the plot of the PDF of $N(12, 8)$ truncated to $(0, 24)$ is shown at the right in Fig. 4.

The goodness of fit measures for g_4 vs. f'_{D3}, the PDF of $N(12, 8)$ truncated to $[0, 24]$, are as follows: $KL(f'_{D3}, g_4) \approx 0.00002$, $MAD(f'_{D3}, g_4) \approx 0.00004$, $AEM(f'_{D3}, g_4) \approx 0.0000$, $AEV(f'_{D3}, g_4) \approx 0.0187$.

13
Finally, we compute the marginal PDF of C_3 as follows:

$$g_6(c_3) = \int_{-\infty}^{\infty} g_1(d_1) g_2(d_1, c_3 - d_1) \, dd_1. \quad (12)$$

It takes approximately 4.98 seconds to do the integration in Eq.(12), and $g_6(\cdot)$ is computed as a 9-piece, 7-degree MOP on the domain (0,30). The exact marginal distribution of C_3 is $N(15,13)$. A plot of g_6 overlaid on the plot of the PDF of $N(15,13)$ truncated to (0,30) is shown at the right in Fig. 5.

The goodness of fit measures for g_6 vs. f'_{C_3}, the PDF of $N(15,13)$ truncated to (0,30), are as follows: $KL(f'_{C_3}, g_6) \approx 0.00003$, $MAD(f'_{C_3}, g_6) \approx 0.00004$, $AEM(f'_{C_3}, g_6) \approx 0.0000$, $AEV(f'_{C_3}, g_6) \approx 0.0284$.

3.3.3 Comparison

We will compare the computed marginals of D_3 and C_3 in terms of the sizes of MOPs, time required for computation, and accuracy.

Sizes of MOPs. Consider the sizes of the MOP approximations of the marginals of D_3 and C_3 displayed in Tab. 1.

<table>
<thead>
<tr>
<th>Size of MOPs</th>
<th>Hypercube</th>
<th>Hyper-rhombus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marg. PDF of D_3</td>
<td>8-piece</td>
<td>4-piece</td>
</tr>
<tr>
<td>g_{4c} vs. g_4</td>
<td>3-degree</td>
<td>7-degree</td>
</tr>
<tr>
<td>Marg. PDF of C_3</td>
<td>6-piece</td>
<td>9-piece</td>
</tr>
<tr>
<td>g_{6c} vs. g_6</td>
<td>3-degree</td>
<td>7-degree</td>
</tr>
</tbody>
</table>

Table 1: Sizes of the MOP approximations of the marginals of D_3 and C_3.

For the marginal PDF of D_3, the hypercube MOP $g_{4c}(\cdot)$ has more pieces but fewer degrees than the corresponding MOP $g_4(\cdot)$. To see why, $g_{4c}(\cdot)$ is computed as described in Eq. (7). $g_1(d_1)$ is a 2-piece, 3-degree MOP and $g_{2c}(d_1, d_3)$ is a 6-piece, 3-degree MOP. After multiplication, $g_1(d_1) g_{2c}(d_1, d_3)$ is a 8-piece, 3-degree MOP defined on hypercubes. After integration with respect to d_1, the degrees associated with d_1 disappear, but none of the pieces do, resulting in a 8-piece, 3-degree MOP $g_{4c}(d_3)$. On the other hand, $g_4(\cdot)$ is defined as in Eq.(11). $g_1(d_1)$ is a 2-piece, 3-degree MOP, and $g_2(d_1, d_3)$ is a 2-piece, 3-degree MOP defined on hyper-rhombus. After multiplication,
\(g_1(d_1) \) \(g_2(d_1, d_3) \) is a 4-piece, 6-degree MOP defined on hyper-rhombus regions. After integration with respect to \(d_1 \), the result is a 6-piece, 7-degree MOP. Two of the six pieces are defined on singleton points (\(d_3 = 18 \), and \(d_3 = 22 \)). The reason why the degree increases to 7 is because when integrating a MOP defined on a rhombus, the limits of integration are in terms of \(d_3 \), and since \(\int d_1^n d_1 = d_1^{n+1} \), the degree of the resulting MOP increases from 6 to 7.

For the marginal PDF of \(C_3 \), the hypercube MOP \(g_{6c}(\cdot) \) has fewer pieces and fewer degrees than the corresponding MOP \(g_6(\cdot) \). To see why, \(g_{6c}(\cdot) \) is computed as described in Eq. (6). \(g_1(d_1) \) is a 2-piece, 3-degree MOP and \(g_{5c}(d_1, d_3) \) is a 6-piece, 3-degree MOP. After multiplication, \(g_1(d_1) g_{5c}(d_1, d_3) \) is a 8-piece, 6-degree MOP defined on hypercubes. After integration with respect to \(d_1 \), the degrees associated with \(d_1 \) disappear, and three of the pieces do, resulting in a 6-piece, 3-degree MOP \(g_{4c}(d_3) \). Two of the six pieces are defined on singleton regions (\(c_3 = 9 \) and 15). On the other hand, \(g_6(\cdot) \) is defined as in Eq. (12). \(g_1(d_1) \) is a 2-piece, 3-degree MOP, and \(g_2(d_1, c_3 - d_1) \) is a 2-piece, 3-degree MOP defined on hyper-rhombus. After multiplication, \(g_1(d_1) g_2(d_1, c_3 - d_1) \) is a 4-piece, 6-degree MOP defined on hyper-rhombus regions. After integration with respect to \(d_1 \), the result is a 9-piece, 7-degree MOP. One of the nine pieces is defined on a singleton point (\(c_3 = 15 \)).

In summary, although mixed-tree hypercube MOPs initially require more pieces than hyper-rhombus MOPs, after integration, MOPs defined on hypercubes tend to lose pieces and lose degrees, whereas MOPs defined on hyper-rhombuses tend to increase pieces (some of these are defined on lower dimensional regions), and increase degrees.

Computation Time. Next, consider the times required for the computation of the marginals of \(D_3 \) and \(C_3 \) displayed in Tab. 2. Notice that the time required is a random variable. We repeated the experiment 10 times under identical conditions for both cases and computed the mean and standard error (SE) of the mean. The 97.5 percentile \(t \)-statistic is 2.25 and a 95\% confidence interval for the mean is \(\text{mean} \pm 2.25 \times \text{SE} \).

Integrating a MOP defined on hypercube regions is faster than integrating a MOP defined on hyper-rhombus regions. For the latter, we have to first solve linear inequalities and then do the integration where the limits of integrations are the solutions of the inequalities.

Accuracy. Finally, consider the accuracy of the computed marginals for \(D_3 \) and \(C_3 \) in terms of KL-divergence, maximum absolute deviation, absolute
Mean time in seconds (SE)	Hypercube	Hyper-rhombus
Marg. PDF of D_3 | 1.42 | 3.33
g_{4c} vs. g_4 | (0.01) | (0.01)
Marg. PDF of C_3 | 1.35 | 4.92
g_{6c} vs. g_6 | (0.009) | (0.003)

Table 2: Times required for the computation of the marginals of D_3 and C_3.

Accuracy	Hypercube	Hyper-rhombus
Marg. PDF of D_3	KL: 0.0082	KL: 0.00002
g_{4c} vs. g_4	MAD: 0.0092	MAD: 0.00004
AEM: 0.0000	AEM: 0.0000	
AEV: 1.1653	AEV: 0.0188	
Marg. PDF of C_3	KL: 0.0480	KL: 0.00003
g_{6c} vs. g_6	MAD: 0.0360	MAD: 0.00004
AEM: 0.0000	AEM: 0.0000	
AEV: 2.6735	AEV: 0.0284	

Table 3: Accuracy of the computed marginals for D_3 and C_3.

Hyper-rhombus MOPs are more accurate than mixed-tree hypercube MOPs by two orders of magnitude or more. We can increase accuracy of mixed-tree hypercube MOPs by increasing # mixed-tree points (up to a point), but this will increase sizes and computation time. An important point is that in the case of mixed-tree hypercube MOPs, we have a choice of accuracy vs. computation time/sizes, which we don’t with hyper-rhomuses.

4 Re-approximation of MOPs/MTEs

As we saw in the preceding section, in the process of integrating MOPs using convolutions, we may get pieces defined on lower-dimensional regions, which have no probabilities associated with them. For example, $g_6(c_3)$ is a 11-piece, 7-degree MOP. Three of the eleven pieces are defined on singleton regions, and these pieces have no probabilities associated with them. By
re-approximating MOPs, we can reduce \# pieces and degrees (\# pieces and terms for MTEs), which will increase computational efficiency at a small cost in accuracy. We will describe two methods for re-approximating potentials. The first method is applicable both for MOPs and MTEs, whilst the second re-estimates the parameters of the potentials in a different way for MOPs and for MTEs.

4.1 Re-approximation by Dropping Pieces

A simple method of re-approximation is simply dropping pieces that are defined on lower-dimensional regions. Since there are no probabilities associated with such pieces, dropping these pieces causes no additional loss of accuracy. In some cases, we get pieces that have very low probabilities associated with them. In this case, we can drop such low probability pieces. One should make sure that the total probability associated with the dropped pieces stays below some limit (e.g., 0.05) so that the loss of accuracy of computation is not much. It is necessary to re-normalize the potentials after dropping pieces with positive probabilities.

In Sec. 5, we describe some re-approximations of some intermediate functions obtained while solving the PERT hybrid Bayesian network using MOPs and MTEs. Notice that this method cannot be used to lower the degree of a MOP potential, or the number of exponential terms in a MTE potential.

4.2 Re-approximation of MOPs using LIP with Chebyshev points

Another method for re-approximating MOP potentials is by using LIPs with Chebyshev points \[9\]. To illustrate this, consider \(g_6(\cdot)\), the marginal PDF of \(C_3\) from the example in Section 3.3.2, which is defined on non-singleton intervals \((0, 6), (6, 9), (9, 12), (12, 15), (15, 18), (18, 21), (21, 24), (24, 30)\). Let’s re-approximate \(g_6(\cdot)\) using 5 pieces as follows: \((0, 6), (6, 12), (12, 18), (18, 24), (24, 30)\). Currently, we do not have a theory for the choice of pieces. Our strategy is to use fewer pieces by merging pieces of the MOP being approximated, and to keep the sizes of the pieces as equal as possible.

For each interval, we compute the Chebyshev points with the number of points \(n\) that is sufficiently large to get good accuracy, but not too large. A good starting choice is \(n = 4\). We compute the 3-degree LIP that passes
through these 4-points. We need to verify that the LIP is non-negative on the interval. If not, we increase \(n \). If the function being approximated is non-negative over the interval, then we are guaranteed to find an interpolating polynomial that is non-negative for some \(n \). This is because when we increase the number of Chebyshev points by 1, the maximum error between the LIP and the polynomial being approximated is reduced by a factor of 2. If the smallest \(n \) that results in a polynomial that is non-negative is too high, we reduce the width of the interval (i.e., use more pieces) and re-start.

For approximating \(g_6(\cdot) \), using \(n = 5 \) for all five pieces results in a MOP that is non-negative on all the five pieces. Next we normalize the resulting 5-piece, 4-degree MOP so the total area under the MOP is 1. Let \(g_{6r}(\cdot) \) denote the 5-piece, 4-degree MOP approximation of \(g_6 \) found using the above procedure. The accuracy of \(g_{6r}(\cdot) \) compared to \(g_6(\cdot) \) is as follows: \(KL(g_6, g_{6r}) \approx 0.00004, \ MAD(g_6, g_{6r}) \approx 0.00003, \ AEM(g_6, g_{6r}) \approx 0.0000, \ AEV(g_6, g_{6r}) \approx 0.0013 \).

The accuracy of \(g_{6r} \) compared to \(f'_{C_3} \), the exact PDF of \(C_3 \) truncated to \((0, 30)\) is as follows: \(KL(f'_{C_3}, g_{6r}) \approx 0.00005, \ MAD(f'_{C_3}, g_{6r}) \approx 0.00004, \ AEM(f'_{C_3}, g_{6r}) \approx 0.0000, \ AEV(f'_{C_3}, g_{6r}) \approx 0.0297 \).

The accuracy of \(g_6 \) compared to \(f'_{C_3} \), the exact PDF of \(C_3 \) truncated to \((0, 30)\) is as follows: \(KL(f'_{C_3}, g_6) \approx 0.00003, \ MAD(f'_{C_3}, g_6) \approx 0.00004, \ AEM(f'_{C_3}, g_6) \approx 0.0000, \ AEV(f'_{C_3}, g_6) \approx 0.0284 \).

Thus, \(g_{6r} \) approximates \(f'_{C_3} \) just as well as \(g_6 \), and we conclude that \(g_{6r}(\cdot) \) is a good approximation of \(g_6 \).

The LIP method applies also for two or higher dimensional functions. There also exists Chebyshev points theory for two-dimensional regions [16]. For regions in 3 or higher dimensions, we can use some extensions of the one-dimensional Chebyshev point theory. One problem with using LIP with Chebyshev points in two or higher dimensions is non-negativity. It may be necessary to increase the degree of the MOP potential to a very high number making computations numerically unstable. In such cases, we can resort to the idea behind mixed-tree approximations, and use a one-dimensional LIP method with Chebyshev points to approximate a two or higher dimensional function. In Sec. 5, we describe a re-approximation of a MOP (using a one-dimensional LIP method with Chebyshev points) that is obtained as an intermediate function while solving the PERT hybrid BN using MOPs defined on hypercubes.
4.3 Re-approximation of MTEs Using Numeric Least Squares

We discuss how to re-approximate MTEs by reducing the number of pieces and exponential terms. The idea behind the re-approximation method is similar to the one used for MOPs, but using a different mathematical tool. In this case, we rely on the Levenberg-Marquardt (LM) algorithm [17, 18], available via the command `FindFit` provided by Mathematica®. The LM algorithm is for minimizing the sum of the squares of the deviations of the fitted model from the exact one. It is controlled by a so-called damping parameter, λ, which is automatically adjusted in each iteration. If the reduction in the sum of squares is fast, λ is set to a small value and the LM algorithm becomes similar to the Gauss-Newton method. Otherwise, λ is set to a high value, and the LM algorithm becomes closer to a gradient descent method. Selecting appropriate starting values for the set of parameters to estimate is an important issue in order to avoid local optima. Because the MTE approximation to the Gaussian distribution is quite accurate, we will use the parameter estimates of this approximation as starting values for the LM algorithm.

The steps to re-approximate an MTE density f are as follows:

1. Compute the mean and standard deviation using the original density, and fit an MTE to the corresponding Gaussian density with those parameters.

2. Divide the domain of f into fewer pieces than the original one.

3. For each new piece, select a sample of equally distributed values of X in the current piece (25 values were selected in this example).

4. Build a 2-dimensional sample $(x_i, f(x_i))$.

5. Define an MTE potential in the corresponding piece with unknown parameters, fixing the number of terms.

6. Use $(x_i, f(x_i))$ and the starting values to compute the estimates of the parameters of the MTE potential using the LM algorithm.

7. Normalize so that the probability of both potentials coincide.
Note that this procedure is flexible. For example, if the function to be re-approximate is not too complicated, we can set a different number of terms in different regions. In solving the PERT network using MTEs, for the function f_7, we use 6-terms for difficult approximations, usually central regions, and 2-terms for simpler regions, usually tails. Similar to MOPs, there is not yet a formal method to divide the domain. We followed the strategy of splitting the domain if the shape of the function differs from Gaussian shape. This is also related to a successful selection of the starting points, as it requires that the density in the piece being re-approximated somehow resembles a Gaussian shape, which is not always the case.

In the case of re-approximating 2 or higher dimensional potentials, we use the same procedure as MOPs, i.e. using mixed trees and fixing one dimension whilst re-approximating the function for the remaining dimensions. In the case of MTEs this is not difficult, since this is the approach selected to define the conditional distributions (parent variables can only affect the partition of the domain, not the expression of the density itself).

Such a procedure was carried out to re-approximate, using the MTE paradigm, $f_7(c_3, c_4)$, a 54-piece (many of them singleton points) and between 6 and 42 terms (depending on the hypercube) potential. The procedure resulted in a potential f_{7a} with 7 pieces, and with 6 terms for 4 of the pieces and 2 terms for the remaining 3 pieces. In Fig. 6 we can see the original MTE potential and the corresponding re-approximated potential.

![Figure 6: 3-D plots of f_7 (left) and f_{7a} for MTEs.](image)

Note that the re-approximation technique can lead to very accurate solutions, in which the complexity reduction is minimal, or to very smooth approximations, but with a big decrease in the complexity. It depends on
the number of pieces selected and the number of exponential terms included (or degree of the polynomial in the MOP case). Finding a tradeoff between these two extremes is still an open question.

5 Solving the PERT Hybrid Bayesian Network

Using the re-approximation techniques described in Section 4, we were able to solve the PERT hybrid Bayesian network using mixtures of polynomials defined on hypercubes and using mixtures of truncated exponentials. Using mixtures of polynomials on hypercubes, evaluation of the entire Mathematica notebook (all computations including re-approximation) takes about 169.15 seconds (2.82 minutes). Using mixtures of truncated exponentials, evaluation of the entire Mathematica notebook (all computations including re-approximation) takes about 142.65 seconds (about 2.4 minutes). Details of all computations including re-approximations are given in the next subsections. Without re-approximations of some of the intermediate functions, we get a “lack of memory” warning message, even though the available memory was 16GBs.

5.1 Solution Using Hypercube MOPs

We start with a 2-piece, 3-degree MOP \(f_1(\cdot) \) as an approximation of the PDF of the standard normal. Using \(f_1(\cdot) \), we define a 2-piece, 3-degree MOP approximation of the PDFs of \(D_1 \) and \(D_2 \). Using mixed trees, we define a 6-piece, 3-degree MOP of the conditional PDFs of \(D_3 \) and \(D_4 \). We used a 2-piece, 3-degree MOP approximation of the \(\text{Exp}(25) \) density for \(D_5 \).

The initial potentials in the PERT hybrid BN in Fig. 7 are denoted as follows. The conditionals for \(D_1, \ldots, D_5 \) are \(f_{D_1}, \ldots, f_{D_5} \) respectively. The deterministic conditional for \(C_3 \) is \(f_{C_3}(d_1, d_3, c_3) = \delta(c_3 - d_1 - d_3) \), where \(\delta \) stands for the Dirac's delta function. The deterministic conditional for \(C_{23} \) is \(f_{C_{23a}}(d_2, c_{23}, c_{23}) = \delta(c_{23} - d_2) \) if \(A = a \), and \(f_{C_{23na}}(d_2, c_{23}, c_{23}) = \delta(c_{23} - c_3) \) if \(A = na \). For \(C_4 \), we have \(f_{C_4}(c_{23}, c_4, d_4) = \delta(c_4 - c_{23} - d_4) \). For the discrete variable \(A \), we have \(p_{Aa}(d_2, c_3) \) denoting \(P(A = a|d_2, c_3) \) and \(p_{Ana}(d_2, c_3) \) for \(P(A = na|d_2, c_3) \). The conditional for \(C_5 \) is denoted as \(f_{C_5}(d_1, d_5, c_5) = \delta(c_5 - d_1 - d_5) \). For the discrete variable \(B \), we have \(p_{Bb}(c_4, c_5) \) meaning \(P(B = b|c_4, c_5) \) and \(p_{Bnb}(c_4, c_5) \) meaning \(P(B = nb|c_4, c_5) \). Finally, the
conditional for F is denoted as $f_{Fb}(c_4, c_5, f) = \delta(f - c_4)$ if $B = b$ and as $f_{Fn(b)}(c_4, c_5, f) = \delta(f - c_5)$ if $B = nb$.

The goal is to compute the marginal density for F. To that end, we choose an elimination order of the remaining variables in the network, namely $D_5, D_3, D_1, D_4, D_2, C_23, A, C_3, C_4, C_5$, and B.

The deletion of D_5 is carried out by computing

$$f_2(d_1, c_5) = \int_{-\infty}^{\infty} f_{D_5}(d_5) f_{C_5}(d_1, d_5, c_5) \, dd_5$$

$$= f_{D_5}(c_5 - d_1).$$

Notice that f_2 is not defined on hypercubes. So we approximate f_2 by f_{2c} by using a 3-point mixed tree approximation.

Next we delete D_3 by computing

$$f_3(d_1, c_3) = \int_{-\infty}^{\infty} f_{D_3}(d_1, d_3) f_{C_3}(d_1, d_3, c_3) \, dd_3$$

$$= f_{D_3}(d_1, c_3 - d_1).$$

Notice that f_3 is not defined on hypercubes. So we approximate f_3 by f_{3c} by using a 3-point mixed tree approximation.
Next we delete D_1 by computing

$$f_4(c_3, c_5) = \int_{-\infty}^{\infty} f_{D_1}(d_1) f_{2c}(d_1, c_5) f_{3c}(d_1, c_3) \, dd_1.$$

f_4 is computed as a 23-piece, 8-degree MOP, and takes 5.05 seconds to be calculated. Next, we re-approximate f_4 by f_{4r}, as follows. 9 of the 23 pieces are defined on 1-dimensional regions. Thus, we can safely drop these pieces resulting in a 14-piece MOP. Further examination of these 14 pieces reveals that 6 of the pieces have very small probabilities (0.000017 to 0.026) associated with them. The total probability associated with these 6 pieces is ≈ 0.044. After we drop these 6 pieces and re-normalize the potential, we obtain a 8-piece MOP $f_{4r}(c_3, c_5)$ that can be used in place of $f_4(c_3, c_5)$. Fig. 8 shows 3-D plots of f_4 and f_{4r}.

Next, we delete D_4 by computing

$$f_5(c_{23}, d_2, c_4) = \int_{-\infty}^{\infty} f_{D_4}(d_2, d_4) f_{C_4}(c_{23}, c_4, d_4) \, dd_4 = f_{D_4}(d_2, c_4 - c_{23}).$$

f_5 is not defined on hypercubes. As before, we re-define f_5 by f_{5c}, which is defined on a 3-point mixed tree hypercube.
Next, the deletion of D_2 yields the following functions:

\[
\begin{align*}
 f_{6a}(c_3, c_{23}, c_4) &= \int_{-\infty}^{\infty} f_{D_2}(d_2) \ f_{C_{23a}}(d_2, c_3, c_{23}) \ f_{5c}(c_{23}, d_2, c_4) \ p_{Aa}(d_2, c_3) \ d d_2 \\
 &= f_{D_2}(c_{23}) \ f_{5c}(c_{23}, c_{23}, c_4) \ p_{Aa}(c_{23}, c_3), \\
 f_{6na}(c_3, c_{23}, c_4) &= f_{C_{23na}}(d_2, c_3, c_{23}) \ integrate_{-\infty}^{\infty} f_{D_2}(d_2) \ f_{5c}(c_{23}, d_2, c_4) \ p_{Aa}(d_2, c_3) \ d d_2 \\
 &= \delta(c_{23} - c_3) \ integrate_{-\infty}^{c_3} f_{D_2}(d_2) \ f_{5c}(c_{23}, d_2, c_4) \ d d_2.
\end{align*}
\]

Next we marginalize out C_{23} as follows:

\[
\begin{align*}
 f_{7a}(c_3, c_4) &= \int_{-\infty}^{\infty} f_{6a}(c_3, c_{23}, c_4) \ d c_{23} \\
 &= \int_{-\infty}^{\infty} f_{D_2}(c_{23}) \ f_{5}(c_{23}, c_{23}, c_4) \ p_{Aa}(c_{23}, c_3) \ d c_{23} \\
 &= \int_{c_3}^{c_4} f_{D_2}(c_{23}) \ f_{5}(c_{23}, c_{23}, c_4) \ d c_{23}, \\
 f_{7na}(c_3, c_4) &= \int_{-\infty}^{\infty} f_{6na}(c_3, c_{23}, c_4) \ d c_{23} \\
 &= \int_{-\infty}^{c_3} f_{D_2}(d_2) \ f_{5}(c_3, d_2, c_4) \ d d_2.
\end{align*}
\]

Next we delete A by computing

\[
 f_7(c_3, c_4) = f_{7a}(c_3, c_4) + f_{7na}(c_3, c_4).
\]

Potential f_7 is computed as a 17-piece, 7-degree MOP and it requires 16.82 seconds to be computed. Given the large number of pieces, we re-approximate f_7 by f_{7r}, an 8-piece, 7-degree MOP using Lagrange interpolating polynomials with Chebyshev points as follows.

f_7 is computed on the domain $(3 < c_3 < 27) \times (1.125 < c_5 < 137.5)$. We will approximate this potential by a 8-piece, 7-degree MOP f_{7r} as follows. Consider a 4-way partition of $(3 < c_3 < 27)$ as follows: $(3, 11, 17, 23)$ and $[23, 27)$. Consider the region $3 < c_3 < 11$. We approximate $f_7(7, c_4)$ (a 1-dimensional function, $c_3 = 7$ is the mid-point of the interval) using LIP with Chebyshev points as discussed earlier by a 2-piece, 7-degree MOP and use this approximation for the region $(3 < c_3 < 11) \times (11 < c_5 < 25)$.

\[
\begin{align*}
 f_{7a}(c_3, c_4) &= \int_{-\infty}^{\infty} f_{6a}(c_3, c_{23}, c_4) \ d c_{23} \\
 &= \int_{-\infty}^{\infty} f_{D_2}(c_{23}) \ f_{5}(c_{23}, c_{23}, c_4) \ p_{Aa}(c_{23}, c_3) \ d c_{23} \\
 &= \int_{c_3}^{c_4} f_{D_2}(c_{23}) \ f_{5}(c_{23}, c_{23}, c_4) \ d c_{23}, \\
 f_{7na}(c_3, c_4) &= \int_{-\infty}^{\infty} f_{6na}(c_3, c_{23}, c_4) \ d c_{23} \\
 &= \int_{-\infty}^{c_3} f_{D_2}(d_2) \ f_{5}(c_3, d_2, c_4) \ d d_2.
\end{align*}
\]
59). By doing this for all four pieces of the partition of the domain of \(C_3 \), we obtain a 8-piece, 7-degree MOP approximation \(f_{7r} \) of the two-dimensional MOP \(f_7 \). Fig. 9 shows 3-D plots of \(f_7 \) and \(f_{7r} \).

Next, after elimination of \(C_3 \), \(f_8 \) is computed as a 53-piece, 10-degree MOP in 26.01 seconds:

\[
f_8(c_4, c_5) = \int_{-\infty}^{\infty} f_{4r}(c_3, c_5) f_{7r}(c_3, c_4) \, dc_3.
\]

(13)

The elimination of \(C_4 \) consists of computing

\[
f_{9b}(c_5, f) = \int_{-\infty}^{\infty} p_{Bb}(c_4, c_5) f_{Fb}(c_4, c_5, f) f_8(c_4, c_5) \, dc_4
\]

\[= \int_{-\infty}^{\infty} p_{Bb}(c_4, c_5) \delta(f - c_4) f_8(c_4, c_5) \, dc_4\]

\[= p_{Bb}(f, c_5) f_8(f, c_5)\]

and

\[
f_{9nb}(c_5, f) = \int_{-\infty}^{\infty} f_{Fnb}(c_4, c_5, f) p_{Bnb}(c_4, c_5) f_8(c_4, c_5) \, dc_4\]

\[= \delta(f - c_5) \int_{-\infty}^{c_5} f_8(c_4, c_5) \, dc_4.\]
The elimination of C_5 takes 108.19 seconds, required to calculate

$$f_{10b}(f) = \int_{-\infty}^{\infty} f_{9b}(c_5, f) \, dc_5$$

$$= \int_{-\infty}^{f} f_8(f, c_5) \, dc_5$$

and

$$f_{10nb}(f) = \int_{-\infty}^{\infty} f_{9nb}(c_5, f) \, dc_5$$

$$= \int_{-\infty}^{f} f_8(c_4, f) \, dc_4.$$

Finally, by eliminating B, we obtain $f_{11}(f) = f_{10b}(f) + f_{10nb}(f)$, which is a 22-piece, 11-degree MOP representation of the PDF of F. Using f_{11}, we compute the expectation and standard deviation of F: $\mu_F = 43.44$ days and $\sigma_F = 15.71$ days, respectively. A plot of f_{11} is shown in Fig. 10. Evaluation of the entire Mathematica notebook (all computations including re-approximation) takes about 169.15 seconds (2.8 minutes).

Re-approximation of f_4 and f_7 is crucial to solving the PERT hybrid BN. Without re-approximation of these two functions, computing f_8 results in “lack of memory” warning message even though the computer is equipped with 16GB of RAM.
5.2 Solution using MTEs

The inference process to solve the PERT network using MTEs is exactly the same as in the previous section using MOPs, but using MTE potentials instead. Therefore, we will only describe here the differences about the sizes of the potentials and the computations times, as well as the result obtained.

In Section 3.1, we explained how to avoid the problem of obtaining non-MTE potentials when doing the convolution operation. However, there is another problem when dealing with the max operations involved in the network, in particular when computing \(f_{7a}, f_{7na}, f_{10b}, \) and \(f_{10nb} \). In all those cases, because the probability potentials for discrete variables \(A \) and \(B \) are not defined on hypercubes, one of the integration limits is a variable, which yields a non-MTE potential. As an example illustrating this issue consider an MTE potential as follows:

\[
f(x, y) = 1 + e^{3x+2y} \quad \text{if } 3 < x < 5 \text{ and } 1 < y < 5.
\] (14)

Integrating out \(y \) we obtain

\[
\int_{3}^{x} f(x, y) dy = x - 3 + \frac{1}{2} e^{5x} - \frac{1}{2} e^{3x+6}, \quad \text{if } 3 \leq x \leq 5,
\] (15)

which is not an MTE function, as it contains a polynomial term. In this case, the problem is due to the constant term \(a_0 \) in \(f(x, y) \), and it can be avoided by not including it in Definition 1 of an MTE function. Using this version of MTEs, the PERT network can be solved within the MTE class. Thus, instead of using the original definition, for solving the PERT network we use

\[
f(z) = \sum_{i=1}^{m} a_i \exp \{ b_i^T z \},
\] (16)

in all the MTE potentials involved in the solution.

So, we start with a 1-piece, 6-terms (without a constant term) MTE, \(f_1(\cdot) \), as an approximation of the PDF of the standard normal PDF on the domain \([-2.5, 2.5]\) (see the parameters in Tab. 4), obtained using the LM algorithm (see Section 4.3) and using as initial values the ones obtained by [19] in their approximation of the PDF of the standard normal density. Using \(f_1(\cdot) \), we define a 1-piece, 6-terms MTE approximation of the PDF of \(D_1 \) and \(D_2 \). Using mixed trees, we define a 2-piece, 6-terms MTE approximation of the conditional PDFs of \(D_3 \) and \(D_4 \). Since the PDF of the exponential
Table 4: Parameter values of the MTE approximation to the Gaussian distribution.

distribution is already a 1-piece, 1-term MTE, no approximation is needed for the PDF of D_5.

In order to compute the marginal for F, we use the same elimination order as for the case of MOPs. After the elimination of D_5, D_3, and D_1, we compute a 11-piece, 6-terms MTE $f_4(c_3, c_5)$ in 4.54 seconds. We re-approximate f_4 as follows.

One of the 11 pieces is a singleton point, which due to the continuous nature of the distribution can be excluded. Three of the remaining pieces have very low probabilities (0.00005 to 0.019) with a total mass of 0.02594. After dropping these pieces and re-normalizing, the density is a 4-piece MTE $f_{4s}(c_3, c_5)$ that can be used in place of $f_4(c_3, c_5)$. Fig. 11 shows f_4 and f_{4s}.

![Figure 11: MTEs corresponding to f_4 (left) and f_{4s} (right).](image)

After further elimination of D_4, D_2, C_{23} and A, we compute a 16-piece, 72-terms MTE $f_7(c_3, c_4)$ in 31.96 seconds, which we re-approximate as a 7-piece potential f_{7s}, with 6 terms for 5 of the pieces and 2 terms for the remaining 3 pieces.

After further elimination of C_3, we obtain a 20-piece, and between 4 and 10 terms MTE $f_8(c_4, c_5)$ in 29.21 seconds. Then we delete C_4, and C_5 (need 59.14 seconds), and B, obtaining a 5-piece, and between 2 and 38 terms MTE approximation of the marginal PDF of F. A graph of it is

\[
\begin{array}{cccccc}
 a_i & 73750.9 & -235407 & 146016 & 146855 & -140195 \\
b_i & -0.045451 & -0.027365 & 0.065411 & 0.006084 & -0.006084 & 0.013520 & 8980.02
\end{array}
\]
Figure 12: The MTE approximation of the marginal of F.

displayed in Fig. 12. We compute the expectation and standard deviation: $E(F) = 43.79$ days and $\sigma_F = 16.17$ days, respectively. The evaluation of the entire Mathematica notebook (all computations) takes about 142.65 seconds (about 2.4 minutes).

5.3 Solution Using Simulation

In order to have a clearer idea of the true marginal for F, we computed an estimate of it by simulating a sample of size 1,000,000 of D_1, \ldots, D_5 and then computing the corresponding values of C_3, C_{23}, C_4, C_5 and F for each record in the sample, according to their definition. Then, we fitted a Gaussian kernel density to the values obtained for F. The result is displayed in Fig. 13. In this case, point estimates of the expectation and standard deviation of F are $\hat{E}(F) = 36.19$ and $\hat{\sigma}_F = 20.28$ days, respectively.

6 Summary and Conclusions

We have described some practical issues in solving hybrid BNs that include deterministic conditionals using MTEs and MOPs. As an illustration, we have solved a PERT hybrid BN consisting of 2 discrete and 10 continuous variables, 5 of which have linear deterministic conditionals.

One key observation is that in the process of solving the PERT hybrid BN, some of the intermediate potentials have a large number of pieces, some of
which are defined on lower dimensions and which have no useful information. One solution to this is to re-approximate these potentials with a smaller number of pieces and fewer degrees/terms. In the case of MOPs/MTEs, this can be done by dropping pieces on lower-dimensional regions (that have no probabilities) or pieces that have very small probabilities. In the case of MOPs, this can also be done using LIPs with Chebyshev points. In the case of MTEs, this can be done using the LM algorithm.

Some limitations of our methods are as follows. Currently, doing the re-approximations needs manual interventions to determine the number of pieces, the split points defining the pieces, and the number of terms in the case of MTEs. More work needs to be done in making these judgments.

We plan to solve the PERT hybrid BN using MOPs defined on hyper-hombuses to keep the number of pieces to a minimum, and compare the running time and accuracy with the corresponding results using hypercubes. Shenoy [9] describes the use of LIPs with Chebyshev points for approximating univariate and bivariate functions by MOPs. However, more work needs to be done in re-approximating high-dimensional joint and conditional functions by MOP using LIPs with Chebyshev points.
Acknowledgment

This work has been supported by the Spanish Ministry of Economy and Competitiveness, through projects TIN2010-20900-C04-01 and 02, and by ERDF (FEDER) funds, and by a sabbatical partially funded by the University of Kansas, Lawrence, KS, to one of the co-authors. Thanks to Serafín Moral for suggesting the re-approximation strategy. Some portions of this paper have appeared as [20, 21].

References

