
A Model for Estimating Medicare/Supplemental Security Income Fraction for 340B Drug 
Pricing Program Qualification 

 
Steve Hillmer and Prakash P. Shenoy 

Center for Business Analytics Research 
University of Kansas School of Business 

1300 Sunnyside Ave, Summerfield Hall, Lawrence, KS 66045-7601 
hillmer@ku.edu, pshenoy@ku.edu 

 

Abstract 

We describe a model for estimating the Medicare/supplemental security income (SSI) 
fraction for a metropolitan hospital for qualification as a distressed share hospital in 
the 340B Drug Pricing Program. Our model is a mixture of two models. The first 
model is a probability model that computes the probability of SSI eligibility for each 
patient visit based on SSI eligibility on a previous visit for repeat patient visits. The 
second model is a logistic regression model based on categorical factors such as 
gender, race, median block income of the patient’s residence, and distance of the 
patient’s residence from the hospital, for first-time patient visits. These probabilities 
are then used to estimate the SSI fraction, and compute a 95% confidence interval for 
the estimate, for each fiscal year. The model is validated using a holdout sample. The 
model has been used by a hospital for reporting the SSI fraction for two consecutive 
fiscal years. 

Key Words: 340B drug discount program, Medicare supplemental security income 
fraction, hybrid model, logistic regression model. 

1. Introduction 

The 340B Drug Pricing Program is a U.S. Federal government program created in 1992 that 
requires drug manufacturers to provide outpatient drugs to eligible health care organizations at 
significantly reduced prices. The 340B Program is administered by the Office of Pharmacy 
Affairs, located within the Health Resources and Services Administration of the Department of 
Health and Human Services (http://www.hrsa.gov/opa/). Eligible health care organizations 
include Medicare/Medicaid disproportionate share hospitals that meet the requirements of 42 
USC 256b(a)(4)(L).  

One of the requirements of 42 USC 256b(a)(4)(L) is that the hospital, for the most recent cost 
reporting period, has a disproportionate share adjustment percentage (as determined under 
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section 1886(d)(5)(F) of the Social Security Act [42 U.S.C. 1395ww(d)(5)(F)]) greater than 
11.75%. The disproportionate share adjustment is determined using two fractions. The first 
fraction, referred to as the Medicare/SSI (or simply SSI) fraction, measures the percentage of all 
Medicare patients (regardless of means) who are entitled to supplemental security income 
benefits. The second fraction, referred to as the Medicaid fraction, accounts for the number of 
Medicaid patients—who, by definition, are low income—not entitled to Medicare. 

For most hospitals, estimating the Medicaid fraction is a fairly straightforward task. 
However, estimating the SSI fraction is difficult as a hospital has little or no information about 
SSI eligibility of its patients (at the time the fraction has to be estimated). In order to compute the 
SSI fraction the hospital must submit information on patients admitted during the most recent 
cost period to the Center for Medicare Services (CMS). Subsequently CMS provides the hospital 
with a file called Medicare Provider Analysis and Review (MedPAR) that has data about the SSI 
eligibility of all the patients in the cost period. However, the MedPAR file is only available 
retrospectively, two to three years after date of discharge, and thus cannot be used to determine 
SSI eligibility for the most recent fiscal year patient visits. 

Our goal is to build a model that estimates the SSI fraction for the most recent fiscal year 
using information of patients that a hospital collects such as health insurance card number 
(HICN), social security number (SSN), gender, race, residential address, etc., and also from 
information in past MedPAR files. By using this model, hospitals will be able to estimate the SSI 
fraction for the current cost period, and in turn this will allow the hospital to compute the current 
disproportionate share adjustment percentage. 

2. Data 

We obtained data from a hospital, ABC Hospital, that was participating in the 340B Drug 

Discount Program. The data spanned 8 Federal fiscal years (FFY). These data were from the 

following two sources. 

1. MedPAR files from CMS for FFY1 through FFY8. These files contain 61,922 patient-

visit records for FFY1 through FFY8 and 49,996 patient-visit records for FFY3 through 

FFY8. Each patient-visit record consists of HICN, Admit date, Discharge date, Length of 

stay (in days), Unit (hospital, psych, or rehab), Covered Medicare days, SSI eligible days, 

Medicare advantage, and Fiscal year. There are no missing values. 

2. The ABC Hospital patient visit database for FFY3 through FFY8 contains 58,862 patient 

visits. Each patient-visit record includes (among other fields) HICN, Discharge date, 

Address (Street, City, State, Zip), Gender, and Race. There are missing values. 
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We merged information from the ABC Hospital patient visit database with the MedPAR files 
using HIC number and Discharge date. After the merge process, for FFY3 through FFY8, there 
were a total of 49,996 patient-visit records, but 4,985 of these were missing information about 
address, gender, and race. These were patient-visit records in the MedPAR file that did not match 
the corresponding records in the ABC Hospital Database (probably because of missing HICN or 
Discharge date or non-match of one of these two fields). 

The data were separated into a training set and a test set. The training set consisted of 
patient-visit records from the merged dataset for FFY3 through FFY7. The test set consisted of 
patient-visit records in FFY8. The training set was used to develop and evaluate the model. The 
model that was developed was then used in the test set to predict the SSI fraction for FFY8 for 
out-of-sample testing, which is necessary to prevent over-fitting. 

3. A Model for Estimating the SSI Fraction 

The goal is to develop a model that can be used to predict the fraction of SSI eligible patient days 
to the total hospital patient days for each fiscal year. In a given fiscal year, assume that there are 
a total of n distinct patients that are admitted to the hospital. For each such patient, define a 
random variable 𝑌" = 1 if that patient is SSI eligible and 𝑌" = 0 if that patient is not SSI eligible. 
Notice that the random variable associated with each patient, 𝑌", has only two possible outcomes, 
either the patient is SSI eligible, or the patient is not SSI eligible. The random variable 𝑌" is said 
to have a Bernoulli distribution with parameter 𝜋", where 0 < 𝜋" < 1, 𝜋" denotes the probability 
that 𝑌" = 1. It is well known (Larsen and Marx, 2006) that the expected value of 𝑌", denoted by 
E(𝑌"), is E(𝑌") = 𝜋", and the variance of 𝑌", denoted by V(𝑌"), is V(𝑌") = 𝜋"(1 −	𝜋").  

If the length of stay (in days) for the ith patient is denoted by 𝐿𝑂𝑆", then the SSI fraction for a 
fiscal year is the total length of stays for the patients who are SSI eligible divided by the total 
length of stays for all patients admitted in the fiscal year. If the SSI fraction is denoted by R, 
then, 

 
 
R = (LOSi )(Yi )i=1

n∑
LOSii=1

n∑ .  (3.1) 

It is assumed that the random variables 𝑌" , for i = 1 to n, are mutually independent. This 
assumption will not be true for a patient who is admitted to the hospital more than once during 
the fiscal year. However, this can be corrected by combining any multiple visits by any patient 
and treating the multiple admissions as a single admission. This means that for all patients with 
multiple admissions to the hospital, the variable 𝐿𝑂𝑆" will be the total length of stay for all the 
combined admissions for that patient in the fiscal year.  
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Since R is a linear combination of n random variables 𝑌", then it follows (Larsen and Marx, 
2006) that the expected value of R, denoted by E(R), is:  

 𝐸 𝑅 = 	 (/012)(32)4
256

/0124
256

, 

and the variance of R, denoted by V(R), is: 

 𝑉 𝑅 = 	 /012 832(9:	32)4
656

( /012)4
256

8 . 

Thus, in order to calculate estimates of E(R) and V(R) we need to compute estimates of 𝜋" for 

each patient that was admitted to hospital ABC during the current FFY. Let 𝜋" denote the 

estimated value of 𝜋" for patient i. Then, an estimator of the SSI fraction R, denoted by 𝑅, is: 

 
 
R̂ = (LOSi )(π̂i )i=1

n∑
LOSii=1

n∑  , (3.2) 

and an estimate of the variance of the SSI fraction is:  

 𝑉 𝑅 = 	 /012 832(9:	32)4
656

( /012)4
256

8 . (3.3) 

Thus, in order to compute the estimated SSI ratio, we need a method to estimate 𝜋" for each 
patient admitted.  

Some of the patients who were admitted in the current fiscal year had been admitted to the 
hospital in previous fiscal years for which we have MedPAR data. For such patients, it is known 
whether or not they were SSI eligible on their previous visit. It is convenient to partition the set 
of all patients into the following three mutually exclusive groups: patients who were admitted 
prior to the current fiscal year and who were SSI eligible at their previous admission (denote this 
set as TY), patients who were admitted prior to the current fiscal year and who were not SSI 
eligible at their previous admission (denote this set as TN), and patients who were not admitted 
during FFY1 to FFY7 (denote this set as F). Let P(TY) denote the probability a patient is in group 
TY, P(TN) denote the probability that a patient is in group TN and denote P(F) the probability 
that a patient is in group F. It follows that (Larsen and Marx, 2006): 

 πi  = P(Yi = 1) = P(Yi = 1|TY) P(TY) + P(Yi = 1|TN) P(TN) + P(Yi = 1|F) P(F). 

Table 1 gives a cross-tabulation for the patients being admitted in FFY3 to FFY7 who had 
been admitted during a previous FFY so that their SSI eligibility from the previous admission is 
known. 
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Table 1. Cross tabulation of SSI eligibility for previously admitted patients 

 SSI eligible in previous 

admission 

 

SSI eligible in current admission no yes Totals 

no 19,468 147 19,615 

yes 68 2,088 2,156 

Totals 19,536 2,235 21,771 

 

From this table, it is possible to estimate two probabilities: P(Yi = 1|TY) = 2,088/2,235 = 0.9342, 

and P(Yi = 1|TN) = 68/19,536 = 0.0035. Thus, we get: 

 π̂i = P(Yi = 1) = 0.9342 P(TY) + 0.0035 P(TN) + P(Yi = 1|F) P(F). (3.4) 

Eq. (3.4) can be used to determine 𝜋" for a subset of the patients admitted in the current FFY. 
For all patients who were admitted to the hospital prior to the current admission, and who were 
SSI eligible at that visit, then P(TY) = 1, P(TN) = P(F) = 0, and π̂i  = 0.9342. For all patients who 
were admitted to the hospital prior to the current admission, and were not SSI eligible at that 
visit, then P(TN) = 1, P(TY) = P(F) = 0 and π̂i  = 0.0035. For all patients who were not admitted 
previously, then P(F) = 1, P(TY) = P(TN) = 0, and 𝜋" = P(Yi = 1|F). In the last case, the value of 
𝜋" must be estimated from demographic information of the patient that is typically available in 
hospital records. Figure 1 shows a graphical model (Koller and Friedman, 2009) for the case 
where a patient has visited the hospital earlier, and the SSI eligibility during the previous visit is 
known. 

Figure 1: A graphical model for SSI eligibility of patients who have visited earlier 

 
 

Thus, we need to develop a model to estimate 𝜋" for patients that have not been previously 
admitted to the hospital based on data that can be derived from information in the hospital data 

Previous 
SSI 

Eligibility 

Yi 
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base. The information that is available about each patient that may be relevant to the probability 
that the patient is SSI eligible includes their age, gender, race, whether they are covered by 
Medicaid, and whether they were admitted to the emergency room. SSI eligible patients 
normally have very low incomes; however, the patient’s income is not a part of the available 
patient information. In addition, since ABC Hospital was located near some neighborhoods with 
a low socio-economic status, it was conjectured that patients who live close to the hospital might 
be more likely to be SSI eligible than patients who live further from the hospital. Low-income 
patients will tend to go to the hospital in an emergency, and in this case will tend to go to a 
hospital close to where they live. 

While information about the income is not directly available from the hospital records, one 
can derive some information about a patient’s income from their address, which is available. GIS 
programs, such as ArcGIS from ESRI (http://www.esri.com), can take an address and match that 
address to defined geographical blocks that contain median income for that block, estimated 
from US Census data. In addition, such GIS programs can determine whether or not a given 
address is within a specified geographic region, like within 15 miles of the hospital. Therefore, 
for each patient, we determined the median income of the residents in the geographic block that 
the patient resided in, and the distance from the hospital. Thus, the following variables were used 
as potential inputs to a statistical model to estimate 𝜋":  

• Female (F) = 1 if the patient is a female, and 0 if a male; 

• White (W) = 1 if the patient is white or Caucasian, and 0 otherwise; 

• Age (A) = age of the patient at dismissal; 

• Medicaid (M) = 1 if the patient is Medicaid eligible, and 0 otherwise; 

• ER Admit (ER) = 1 if the patient is admitted to the emergency room, and 0 otherwise; 

• Residence within 15 miles (Within15m) = 1 if the patient’s address is within 15 miles of 

the hospital, and 0 otherwise; 

• Low Income (LI) = 1 if the median annual income of the block containing the patient’s 

address is $30,000 or less, and 0 otherwise. 

For patients who have not been previously admitted, we are interested in finding a model to 

determine 𝜋" based on patient inputs. For these patients, the random variable 𝑌" has a binary 

response, it only can take on the two values 1 and 0. A common approach in this situation is to 

use a logistic regression model (Agresti, 1996). The logistic regression model allows for 𝜋" to be 

a function of the known patient inputs. In particular, the odds associated with each patient is the 
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ratio of the probability that the patient is SSI eligible and the probability that the patient is not 

SSI eligible or 32
(9:	32)

 . In a logistic regression model, the natural log of the odds ratio is assumed 

to be a linear function of the input variables:  

 ln 32
9:	32

= 	𝛽> +	𝛽9𝑋9," + ⋯	𝛽C𝑋C,". (3.5) 

There are p input variable 𝑋9 to 𝑋C, and the corresponding parameters 𝛽>, …, 𝛽C can be 

estimated from observed data. Once the parameters have been estimated, the input variables can 

be used to estimate ln 32
9:	32

, and this can then be converted to an estimate of 𝜋" as follows: 

 𝜋" = 	
DEFG	E6H6,2G⋯	EIHI,2

9J	DEFG	E6H6,2G⋯	EIHI,2
. (3.6) 

The data in the test set were used to estimate a logistic regression model using all 7 input 
variables. The results are given in Table 2. Based on these results, the null hypothesis that the 
coefficients for the variables Age, Medicaid, and ER Admit are equal to zero cannot be rejected at 
5% level of significance, as the associated p-values are all greater than .05. This suggests that 
these three variables are not statistically significant (at the 5% level of significance), and can be 
dropped from the logistic regression model.  

Table 2. Logistic regression results with all input variables 

Input Variable Estimated 
Coefficient 

p-value 

Female (F) .4743 < .0000 

White (W) –.7386 < .0000 

Age (A) –.0009 .7518 

Medicaid (M) –.0172 .8466 

ER Admit (ER) .0981 .1617 

Within15m .2779 .0003 

Low Income (LI) .8864 < .0000 

 

The model was then re-estimated using the four remaining variables. The results are provided 

in Table 3. All of these variables are significantly different from zero (at the 5% significance 

level) as their associated p-values are all less than .05. The corresponding equation for the log 

odds is: 
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 ln 32
9:	32

= 	−2.61 + .40	𝐹 − .77	𝑊 +	 .20	𝑊𝑖𝑡ℎ𝑖𝑛15𝑚 +	 .92	𝐿𝐼 (3.7) 

Table 3: Logistic regression results with four input variables 

Input Variable Estimated Coefficient p-value 

Female (F) .3859 < .0000 

White (W) –.7735 < .0000 

Within 15 miles (Within15m) .1972 .0052 

Low Income (LI) .9163 < .0000 

 

One issue we should consider is whether or not the effect of the input variables is stable over 

the different FFY periods. In the training set, there are 5 FFY’s, so that one way to evaluate if 

this is true or not is to allow the coefficients in Eq. (3.7) to change over the different FFY’s. We 

will illustrate how this was done with the variable Female (F). Let the variable 𝐹[ take the same 

value as variable F if the data are in FFY3, and take the value 0 if the data are not in FFY3. 

Define the variables 𝐹\ for j = 4 to 7 in a similar manner for FFY’s 4–7. Then consider the 

following model: 

 ln 32
9:	32

= 	𝛽> +	𝛽9𝐹[ + ⋯+	𝛽]𝐹 +	𝛽_𝑊𝑖𝑡ℎ𝑖𝑛15𝑚 +	𝛽^𝐿𝐼 +	𝛽`𝑊. (3.8) 

The model in Eq. (3.8) has the impact of the variable F in FFY3 on the log odds to be 𝛽9, the 
impact of F in FFY4 to be 𝛽a, the impact of F in FFY4 to be 𝛽[, the impact of F in FFY6 to be 
𝛽b, and the impact of F in FFY7 to be 𝛽]. We want to evaluate whether or not the impact of the 
variable F on the log odds is the same for each FFY. One way to do this (Larsen and Marx, 2006) 
is to test the null hypothesis that 𝛽9 = ⋯ =	𝛽] in the model in Eq. (3.8). If we cannot reject this 
null hypothesis, then we can conclude that the coefficient for the variable Female is not changing 
over the different FFY’s. On the other hand, if this null hypothesis is rejected, we would 
conclude that the impact of Female is changing over the different FFY’s. 

To test the null hypothesis that 𝛽9 = ⋯ =	𝛽], we fit the full model in Eq. (3.8), and 
subsequently fit the reduced model in which the null hypothesis is true. We then use the 
likelihood ratio statistic based on the difference between the deviance in the reduced model and 
the full model. This difference has a chi-squared distribution in large samples that can be used to 
compute the p-value for testing the null hypothesis (Agresti, 1996). This approach was repeated 
for each of the 4 input variables. The results are given in Table 4. Since the p-values for the 
variables Female, Within 15 miles, and Low Income, are all larger than 0.05, the null hypothesis 
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cannot be rejected for these three variables (at the 5% level of significance). On the other hand, 
for the variable White, the null hypothesis is rejected. 

Table 4: p-values for testing the null hypothesis of stability over FFY’s 

Variable p-value for testing null hypothesis 

Female 0.1090 

White 0.0423 

Within 15 miles 0.1899 

Low Income 0.1191 

 

Table 5 gives the estimated values for the coefficients for the variable White for the five 

different FFY’s. From Table 5, the estimated values for FFY4 through FFY7 are nearly the same 

so it appears that the coefficients for these years could be assumed to be the same. We 

subsequently verified that the null hypothesis that the coefficients for FFY 4–7 were all equal 

could not be rejected.  

Table 5: Estimated coefficients for the variable White for different FFY’s 

Year Estimated coefficient 

FFY3 –.5305 

FFY4 –.8086 

FFY5 –.8215 

FFY6 –.8081 

FFY7 –.8959 

 

To summarize, the data suggest that the coefficient for the variable W is different for FFY3 
than it is for fiscal years FFY 4–7. There is no evidence that the coefficients for the other 
variables changes over the different fiscal years. 

The resulting model for fiscal FFY3 is as follows (all coefficients are rounded to two 
decimal places for display purposes): 

 ln 32
9:	32

 = –2.61 + 0.38 F + 0.20 Within15m + 0.92 LI – 0.53 W, (3.9) 

and the model for fiscal years FFY4 through FFY7 is as follows: 
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 ln 32
9:	32

	= –2.61 + 0.38 F + 0.20 Within15m + 0.92 LI – .84 W.  (3.10) 

Figure 2 displays a graphical model for SSI eligibility for first-time patient visits. 

Figure 2: A graphical model for SSI eligibility of first-time patient visits 

 

Note that if the input variables change causing ln 𝜋"/(1 − 𝜋")  to increase, then π̂i  will also 
increase, and if the variables change causing ln 𝜋"/(1 − 𝜋")  to decrease, then π̂i  will also 
decrease. Thus, the value of π̂i  will increase if the patient is a female, if the patient’s address is 
within 15 miles of the hospital, if the median income of the block in which the patient lives is 
$30,000 or less, and if the patient’s race is not white or Caucasian. This combination will result 
in the largest estimated probability of being SSI eligible of 0.24. The lowest estimated 
probability of being SSI eligible, 0.03, will occur for a white male patient living more than 15 
miles from the hospital in an area where the median income is greater than $30,000. Thus, 
depending upon the characteristics of the patient, the estimated probability of being SSI eligible 
will change quite a bit. 

Based on our model, the probabilities of SSI eligibility for each patient are estimated as 
follows: 

1) If the patient was admitted to the hospital prior to the current visit, and if at the prior 

admission the patient was SSI eligible, the estimated probability of the patient being SSI 

eligible for the current admission is 0.9342. By prior visit, we mean discharged on or after 

the start of FFY1, the earliest fiscal year for which we have data of SSI eligibility from the 

MedPAR file. 

2) If the patient was admitted to the hospital prior to the current visit, and if at the prior 

admission the patient was not SSI eligible, the estimated probability of the patient being SSI 

eligible for the current admission is 0.0035. 

Female White Within15m Low 
Income 

Yi 

FFY3? 
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3) If the patient is being admitted for the first-time since FFY1, then the probability that the 

patient is SSI eligible is estimated from the logistic regression models in Eqs. (3.9) and 

(3.10). 

If we know the values of 𝜋" for each patient, the estimated SSI ratio can be computed from 
Eq. (3.2), and the variance of the estimated SSI fraction can be computed from Eq. (3.3). The 
standard deviation is the square root of the estimated variance. The estimated SSI fraction, and 
its standard deviation, can be used to compute a 95% confidence interval for the SSI fraction as 
follows: Estimated SSI fraction ± (1.96)*(Standard Deviation). The 1.96 constant is the 97.5 
percentile of the standard normal distribution, and normal distribution assumption of 𝑅 is 
justified based on the large values of n, and the central limit theorem (Larsen and Marx, 2006). 

4. Results 

For each of FFY3 though FFY8 we used the data available for each patient visit during that 

particular FFY to compute 𝜋" for each patient according to our model. We then combined the 𝜋" 

with the known 𝐿𝑂𝑆" (the length of stay for the patient visit) to compute the estimated SSI 

fraction, the standard deviation of the estimate, and a 95% confidence interval for the SSI 

fraction. Since we have the MedPAR files for these FFY’s, we can compute the actual SSI 

fraction for each FFY. The estimated results for the test year FFY8 were computed only using 

the data from the training set, FFY3 through FFY7. The results are provided in Table 6.  

For each fiscal year, the estimated SSI fraction is very close to the actual SSI fraction. The 

largest difference occurs in FFY8, the test set, where the actual is .0039 less than the estimated 

SSI fraction. Also, all of the 95% confidence intervals contain the actual SSI fraction. Based on 

these results, it appears that our model does an excellent job of estimating the SSI fraction. 
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Table 6. Results from using our model to estimate the SSI fraction 

Fiscal 
year 

Actual  
SSI 

Fraction 

Est. 
SSI 

Fraction 

|Actual – 
Est.| 

Std. Dev. 
of Est. 

95% Confidence Interval of 
Estimate 

FFY3 0.0865 0.0901 0.0036 0.0041 (0.0821, 0.0981) 

FFY4 0.0799 0.0766 0.0033 0.0037 (0.0693, 0.0839) 

FFY5 0.0748 0.0754 0.0006 0.0030 (0.0695, 0.0813) 

FFY6 0.0662 0.0690 0.0028 0.0029 (0.0633, 0.0747) 

FFY7 0.0764 0.0769 0.0005 0.0028 (0.0714, 0.0824) 

FFY8 0.0675 0.0714 0.0039 0.0025 (0.0665, 0.0763) 

Summary & Conclusion 

We have developed a model that can be used to estimate the SSI fraction for a given FFY in a 
particular hospital. This model has been used by ABC Hospital to estimate the SSI fraction for 
two subsequent Federal fiscal years. This fraction was one input in determining the 
disproportionate share adjustment percentage for ABC Hospital in order to justify the hospital’s 
eligibility in the 340B Drug Pricing Program. The ability to estimate the SSI fraction soon after 
the Federal fiscal year ends makes it possible for ABC Hospital to document that it met the drug 
pricing program threshold, and was qualified for drug reimbursement. Without our model, ABC 
Hospital would have to wait 2 to 3 years to get the MedPAR data from CMS that could then be 
used to compute the SSI fraction. Our results show that the SSI fraction can be accurately 
estimated with currently available data. 
 While the details of the model we developed for ABC Hospital will change for other 
hospitals, our general approach can be used for other hospitals. What is required is historical 
MedPAR data on the SSI eligibility of past hospital patients, and information in current hospital 
records. The manner in which we deal with patients whose SSI status is known from a previous 
visit will be the same. For first-time patients, the data available to estimate a logistic regression 
model may change for other hospitals; however, the general approach of using logistic regression 
can be applied. 
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