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Abstract

We define entropy of belief functions in the Dempster-Shafer (D-S) theory that satisfies
a compound distributions property that is analogous to the property that characterizes
Shannon’s definitions of entropy and conditional entropy for probability mass functions.
None of the existing definitions of entropy for belief functions in the D-S theory satisfy this
property. We describe some important properties of our definition, and discuss its semantics
as a measure of dissonance and not uncertainty. Finally, we compare our definition of entropy
with some other definitions that are similar to ours in the sense that these definitions measure
dissonance and not uncertainty.

Keywords: Shannon’s entropy, Dempster-Shafer theory of belief functions, decomposable
entropy of belief functions, compound distributions property, conditional entropy, strong
probability consistency.

1. Introduction

The main goal of this paper is to define entropy of belief functions in the Dempster-
Shafer’s (D-S) theory [4] [21] that satisfies a compound distributions property analogous
to the one that characterizes Shannon’s definitions of entropy and conditional entropy for
probability mass functions [25]. If PX,Y is a probability mass function (PMF) of (X, Y ),
and it is decomposed into PMF PX for X, and conditional probability table PY |X so that
PX,Y = PX ⊗ PY |X , then Shannon’s definitions of entropy and conditional entropy satisfy
Hs(PX,Y ) = Hs(PX) +Hs(PY |X). Here, ⊗ denotes probabilistic combination, which is point-
wise multiplication followed by normalization (if necessary).

In this paper, we provide a definition of entropy of belief functions, and conditional
entropy of conditional belief functions, so that if mX,Y is a basic probability assignment
(BPA) for (X, Y ) that is constructed from a BPA mX for X, and a conditional BPA mY |X
for Y given X, such that mX,Y = mX⊕mY |X , where ⊕ is Dempster’s combination rule, then
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our definitions satisfy H(mX,Y ) = H(mX) +H(mY |X). This is the main contribution of this
paper.

Every definition of entropy of D-S belief functions in the literature satisfies a property
that for Bayesian belief functions, their entropy is the same as Shannon’s entropy on the
corresponding PMFs (for a survey on this topic, see [17] and [11]). While we believe this
property is necessary, we also believe it is grossly insufficient, as it does not include Demp-
ster’s combination rule, the centerpiece of the D-S theory. So, we propose a stronger property
(that includes Dempster’s rule) as follows. Suppose PX,Y = PX ⊗ PY |X is a joint PMF for
(X, Y ), Bayesian BPA mX for X is a representation of PX , BPA mY |X for (X, Y ) is a repre-
sentation of PY |X , and mX,Y = mX ⊕mY |X is a representation of PX,Y . Then, we have the
following properties: H(mX) = Hs(PX), H(mY |X) = Hs(PY |X), and H(mX,Y ) = Hs(PX,Y ).
We call this property “strong probability consistency,” and our definition is the only one
that satisfies it (as a consequence of its decomposability property).

In physics, entropy was introduced as a measure of the amount of disorder in a physical
system. In communication theory, entropy was defined by Claude E. Shannon to measure
the expected amount of information produced by an information source. It equals zero if
we are sure of the output of the information source, and the higher the entropy, the less
predictable we are of the corresponding output. In this way, entropy measures uncertainty.
Shannon’s definition can also be interpreted as the amount of dissonance in a PMF. There
is no dissonance in a PMF that assigns probability 1 to an element of the state space, and
there is maximum dissonance in an equi-probable PMF. Thus, in probability theory, the
semantics of uncertainty and dissonance coincide — the PMFs that express high uncertainty
also express high dissonance, and the PMFs that express low uncertainty also express low
dissonance.

Belief functions are more expressive than PMFs. The equi-probable PMF is unable
to distinguish between complete ignorance and knowledge that all states are equally likely
[21]. Complete ignorance is represented by vacuous belief functions, and while this has
high uncertainty, it has low dissonance. On the other hand, knowledge that all states are
equally likely are represented by an equiprobable Bayesian belief function, and this has
high uncertainty (perhaps not as high as the vacuous belief function on the same state
space), and higher dissonance than the corresponding vacuous belief function. The large
number of attempts to define entropy for belief functions suggests that none of them meet
all the properties satisfied by Shannon’s definition for PMFs. Thus, some authors focus
on measuring uncertainty (e.g., [11]), measuring non-specificity (e.g., [5], [1]), measuring
ambiguity (e.g., [13], [12]), measuring conflict [13], measuring discord (e.g., [15], [14]), and
measuring strife [30]. Some of these definitions have small values for vacuous belief functions,
which are those that measure dissonance (or conflict, discord, strife, etc.). Some definitions
have large values for vacuous belief functions, which are those that measure uncertainty (or
ambiguity, non-specificity, etc.).

In any case, we must distinguish between the myriad properties of Shannon’s entropy,
and the compound distributions property that Shannon used to axiomatically characterize
his definition of entropy. None of the existing definitions of entropy in the D-S literature
satisfy a property similar to the compound distributions property. This omission has led to a
confusion of what D-S belief functions represent — pieces of knowledge that are aggregated
by Dempster’s rule, the centerpiece of the D-S theory. A D-S belief function is often confused
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with a set of PMFs, called a credal set, whose lower bound is a belief function ([19], [8], [20],
[12]), and whose combination rule is better described by the Fagin-Halpern rule ([6], [7]).
It is well documented that credal set semantics of belief functions are incompatible with
Dempster’s combination rule ([23], [24], [7]). The definition of entropy proposed in this
paper is the only one that satisfies an analogue of the compound distributions property, a
property that is intimately connected to Dempster’s combination rule.

Why is decomposable entropy important? In machine learning, a goal is to learn a large
multi-variate graphical belief model from data. Such graphical models are often constructed
from conditional distributions, where each conditional distribution involves only a small set
of variables. In large graphical models, it is intractable to compute the joint belief function
for all variables in the model. Such models are nevertheless useful as one can compute the
marginals of the joint for some variables of interest using local computation, i.e., without
explicitly computing the joint [27]. In the process of learning graphical models from data, one
key question is when should one stop the learning process. One method for deciding when to
stop the learning process, especially in data-rich domains, is to compute the entropy of the
learnt model and stop when the entropy has decreased beyond some threshold. This method
makes sense regardless of whether entropy measures uncertainty or dissonance. If one is
using a decomposable entropy, then it may be possible to compute the joint entropy of a
large model. In the case of non-decomposable entropies, the computation of entropy of large
graphical models is intractable, which raises doubts whether non-decomposable entropies
have any practical applications.

In summary, the main contribution of this article is a definition of entropy of D-S belief
functions that is decomposable. So, it satisfies a key property that is analogous to the
one that axiomatically characterizes Shannon’s entropy for PMFs, which is necessary for
computation of entropies of large graphical belief function models, and which is not satisfied
by any previous definitions of entropy of D-S belief functions in the literature.

An outline of the remainder of the paper is as follows. In Sec. 2, we briefly review
Shannon’s definitions of entropy and conditional entropy. In Sec. 3, we review the represen-
tations, operators, and conditonal belief functions in the D-S theory of belief functions. In
Sec. 4, we provide new definitions of entropy and conditional entropy for the D-S theory and
state and prove the main results of the paper. We also describe the relationship between
conditional and posterior entropy for the case of two binary variables. In Sec. 5, we state
and prove other properties of our definition of entropy. Also, we describe a small graphical
model and compute its entropy. In Sec. 6, we discuss the semantics of our definition of
entropy. In Sec. 7, we compare our definition of entropy with some definitions from the
literature that are similar to ours in the sense that entropy measures dissonance. Finally, in
Sec. 8, we summarize, discuss future research, and conclude.

2. Shannon’s Definition of Entropy

In this section, we briefly review Shannon’s definitions of entropy and conditional en-
tropy of PMFs and conditional PMFs, respectively, of discrete random variables, and their
properties. Most of the material in this section is taken from [25] and [18]. Some of the
notation (such as probabilistic combination, ⊗) we use is from [26].
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Definition 1 (Entropy of a PMF). Suppose PX is a PMF of discrete random variable X
with state space ΩX . The entropy of PX , denoted by Hs(PX), is defined as

Hs(PX) = −
∑
x∈ΩX

PX(x) log2 (PX(x)) . (1)

The traditional definition is to talk about the entropy of X, which is characterized by
PMF PX . Here, we change the terminology and talk instead about the entropy of PMF PX . If
PX(x) = 0, we will follow the convention that PX(x) log(PX(x)) = 0 as limθ→0+ θ log(θ) = 0.
Although we have used logarithm to the base 2, we can use any base and only units will be
changed. With base 2, entropy is measured in units of bits. Henceforth, we will simply write
log for log2.

Suppose PX,Y is a joint PMF of (X, Y ) defined on the joint state space ΩX,Y = ΩX×ΩY .
Then, the joint entropy of PX,Y , denoted by Hs(PX,Y ), is as in Eq. (1), i.e.,

Hs(PX,Y ) = −
∑

(x,y)∈ΩX,Y

PX,Y (x, y) log (PX,Y (x, y)) . (2)

Suppose PX,Y is a joint PMF of (X, Y ) with PX as its marginal PMF for X. Suppose
we observe X = a for some a ∈ ΩX such that PX(a) > 0. This observation is represented
by the PMF PX=a for X such that PX=a(a) = 1. Let PY |a = (PX,Y ⊗ PX=a)

↓Y denote the
posterior (or conditional) PMF of Y (recall that ⊗ denotes pointwise multiplication followed
by normalization, the combination rule in probability theory). The posterior entropy of PY |a,
denoted by Hs(PY |a), is as in Eq. (1), i.e.,

Hs(PY |a) = −
∑
y∈ΩY

PY |a(y) log(PY |a(y)). (3)

Shannon [25] derives the expression for entropy of PX axiomatically using three axioms
as follows:

1. Axiom 1 (Continuity): H(PX) should be a continuous function of PX(x) for x ∈ ΩX .

2. Axiom 2 (Monotonicity): If we have an equally-likely PMF, then H(PX) should be a
monotonically increasing function of |ΩX |.

3. Axiom 3 (Compound distributions): If a PMF is factored into two PMFs, then its
entropy should be the sum of entropies of its factors, e.g., PX,Y (x, y) = PX(x)PY |x(y),
then H(PX,Y ) = H(PX) +

∑
x∈ΩX

PX(x)H(PY |x).

Shannon [25] proves that the only function Hs that satisfies Axioms 1–3 is of the form
Hs(PX) = −K

∑
x∈ΩX

PX(x) log (PX(x)), where K is a positive constant that depends on
the choice of units of measurement.

Let PY |X : ΩX,Y → [0, 1] be a function such that PY |X(x, y) = PY |x(y) for all (x, y) ∈
ΩX,Y . PY |x(y) is only defined for x ∈ ΩX such that PX(x) > 0. PY |X , which is called a
conditional probability table (CPT) in the Bayesian network literature, is not a PMF, but
can be considered as a collection of PMFs. If we combine PX and PY |X using the probabilistic
combination rule ⊗, then we obtain PX,Y , i.e., PX,Y = PX ⊗ PY |X . This means that if we
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start from a joint PMF PX,Y for (X, Y ), we can always find the conditional distribution PY |X
as follows:

PY |X(x, y) = PX,Y (x, y)/PX(x), (4)

for all x ∈ ΩX such that PX(x) > 0, and for all y ∈ ΩY .

Definition 2 (Conditional entropy). Suppose PY |X is a CPT for Y given X for all x ∈ ΩX

such that PX(x) > 0. The conditional entropy of PY |X , denoted by Hs(PY |X), is defined as

Hs(PY |X) =
∑
x∈ΩX

PX(x)Hs(PY |x). (5)

From this definition, it follows that

Hs(PY |X) =
∑
x∈ΩX

PX(x)Hs(PY |x)

= −
∑
x∈ΩX

PX(x)
∑
y∈ΩY

PY |x(y) log(PY |x(y))

= −
∑

(x,y)∈ΩX,Y

PX(x)PY |x(y) log(PY |x(y))

= −
∑

(x,y)∈ΩX,Y

PX(x)PY |X(x, y) log(PY |X(x, y)). (6)

Thus, in agreement with Axiom 3,

Hs(PX,Y ) = Hs(PX ⊗ PY |X) = Hs(PX) +Hs(PY |X). (7)

If we refer to Hs(PX) as the marginal entropy (of X), then Eq. (7) is the compound distri-
butions axiom underlying Shannon’s entropy expressed in terms of marginal and conditional
entropies. Eq. (7) is also called the chain rule of entropy.

Example 1 (Marginal, conditional, and joint entropy). Consider variables X with ΩX =
{x, x̄}, and Y with ΩY = {y, ȳ}. Suppose

PX(x) = 0.6, PY |x(y) = 0.8, andPY |x̄(y) = 0.3.

It is easy to confirm that

Hs(PX) ≈ 0.971, Hs(PY |x) ≈ 0.722, Hs(PY |x̄) ≈ 0.881,

Hs(PY |X) = 0.6 ·Hs(PY |x) + 0.4 ·Hs(PY |x̄) ≈ 0.786.

Then, Hs(PX) +Hs(PY |X) ≈ 0.971 + 0.786 = 1.757. The joint PMF PX,Y is as follows:

PX,Y (x, y) = 0.48, PX,Y (x, ȳ) = 0.12, PX,Y (x̄, y) = 0.12, andPX,Y (x̄, ȳ) = 0.28,

and its entropy using Eq. (2) is ≈ 1.757. Thus, Hs(PX) +Hs(PY |X) = Hs(PX,Y ).
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3. Basic Definitions in the D-S Belief Functions Theory

In this section we review the basic definitions in the D-S belief functions theory. Like
several other uncertainty theories, D-S belief functions theory includes functional represen-
tations of uncertain knowledge, and operations for making inferences from such knowledge.
Most of the material in Sections 3.1 and 3.2 are taken from [21].

3.1. Representations of belief functions

Belief functions can be represented in many different ways. Here, we focus on basic
probability assignments (BPAs), plausibility functions (PFs), belief functions (BFs), and
commonality functions (CFs).

Basic Probability Assignment. Suppose X is a random variable with a finite state space ΩX .
Let 2ΩX denote the set of all subsets of ΩX . A basic probability assignment (BPA) m for X
is a function m : 2ΩX → [0, 1] such that

m(∅) = 0, (8)∑
a∈2ΩX

m(a) = 1. (9)

Thus, a BPA can be regarded as a PMF for the set of all non-empty subsets of ΩX . The
non-empty subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. An example
of a BPA for X is the vacuous BPA for X, denoted by ιX , such that ιX(ΩX) = 1. We say m
is deterministic (or categorical) if m has a single focal element (with probability 1). Thus,
the vacuous BPA for X is deterministic with focal element ΩX . We say m is consonant if
the focal elements of m are nested, i.e., if they can be ordered such that a1 ⊂ a2 ⊂ ... ⊂ am,
where {a1, ..., am} denotes the set of all focal elements of m. Deterministic BPAs are trivially
consonant. We say m is quasi-consonant1 if the intersection of all focal elements of m is
non-empty. A BPA that is consonant is also quasi-consonant, but not vice-versa. Thus, a
BPA with focal elements {x1, x2} and {x1, x3} is quasi-consonant, but not consonant.

If all focal elements of m are singleton subsets of ΩX , then we say m is Bayesian. In this
case, m is equivalent to the PMF P for X such that P (x) = m({x}) for each x ∈ ΩX . A
Bayesian BPA with two or more focal elements is neither consonant nor quasi-consonant. Let
mu denote the Bayesian BPA with uniform probabilities, i.e., mu({x}) = 1

|ΩX |
for all x ∈ ΩX .

If ΩX is a focal element of m, then we say m is non-dogmatic, and dogmatic otherwise. Thus,
a Bayesian BPA is dogmatic.

The information in a BPA can be represented in several other ways. Here we describe
plausibility function, belief function and commonality functions. All of these functions have
exactly the same information as in a corresponding BPA.

1Dubois and Prade [5] refer to the quasi-consonant property as ‘consistent,’ a term that we believe is
overloaded. We prefer the terminology quasi-consonant.
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Plausibility Function. Suppose m is a BPA for X with state space ΩX . The plausibility
function (PF) corresponding to m, denoted by Plm, is defined as follows:

Plm(a) =
∑

b∈2ΩX : b∩a6=∅

m(b), for all a ∈ 2ΩX . (10)

It follows from Eq. (10) that 0 ≤ Plm(a) ≤ 1, Plm(∅) = 0, and Plm(ΩX) = 1. Also, it
is non-decreasing, i.e., if a ⊆ b, then Plm(a) ≤ Plm(b). If m is a Bayesian BPA, then
Plm({x}) = m({x}) for all x ∈ ΩX . If m is a quasi-consonant BPA, then Plm(a) = 1 for all
focal elements of m. For the vacuous BPA ι, Plι(a) = 1 for all ∅ 6= a ∈ 2ΩX .

Belief Function. The information in a BPA m can also be represented by a corresponding
belief function Belm that is defined as follows:

Belm(a) =
∑

b∈2ΩX : b⊆a

m(b) = 1− Plm(ΩX \ a), for all a ∈ 2ΩX . (11)

It follows from Eq. (11) that 0 ≤ Belm(a) ≤ 1, Belm(∅) = 0, and Belm(ΩX) = 1. Also,
Belm is non-decreasing, i.e., if a ⊆ b, then Belm(a) ≤ Belm(b), and Belm(a) ≤ Plm(a)
for all a ∈ 2ΩX . For the vacuous BPA ι for X, Belι(a) = 0 for all ΩX 6= a ∈ 2ΩX , and
Belι(ΩX) = 1.

Commonality Function. The information in a BPA m can also be represented by a corre-
sponding commonality function (CF) Qm that is defined as follows:

Qm(a) =
∑

b∈2ΩX : b⊇a

m(b), for all a ∈ 2ΩX . (12)

First, it follows from Eq. (12) that 0 ≤ Qm(a) ≤ 1. Second, it follows from Eqs. (8)-(9) that
Qm(∅) = 1. Third, CFs are non-increasing in the sense that if a ⊆ b, then Q(a) ≥ Q(b).
Fourth, a CF Qm has exactly the same information as in the corresponding BPA m. Given
a CF Q, let mQ denote the corresponding BPA. We can recover mQ from Q as follows [21]:

mQ(a) =
∑

b∈2ΩX : b⊇a

(−1)|b\a|Q(b). (13)

Thus, it follows that Q : 2ΩX → [0, 1] is a well-defined CF iff

Q(∅) = 1, (14)∑
b∈2ΩX : b⊇a

(−1)|b\a|Q(b) ≥ 0, for all ∅ 6= a ∈ 2ΩX , and (15)

∑
∅6=a∈2ΩX

(−1)|a|+1Q(a) = 1. (16)

The left-hand side of Eq. (15) is mQ(a), and the left-hand side of Eq. (16) can be shown
to be

∑
∅6=a∈2ΩX mQ(a). Eq. (16) can be regarded as a normalization condition for a CF.

If we have a function Q : 2ΩX → [0, 1] that satisfies Eqs. (14) and (15), but not (16),
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then we can divide each of the values of the function for non-empty subsets in 2ΩX by
K =

∑
∅6=a∈2ΩX (−1)|a|+1Qm(a), and the resulting function will then qualify as a CF.

For the vacuous BPA ι for X, the CF Qι corresponding to BPA ι is given by Qι(a) = 1
for all a ∈ 2ΩX . If m is a Bayesian BPA for X, then Qm is such that Qm(a) = m(a) if
|a| = 1, and Qm(a) = 0 if |a| > 1. If m is non-dogmatic, then Qm(a) > 0 for all a ∈ 2ΩX .

3.2. Operations in the D-S theory

There are two main operations in the D-S theory — Dempster’s combination rule, and
marginalization.

Dempster’s Combination Rule. In the D-S theory, we can combine two BPAs m1 and m2

representing distinct pieces of evidence by Dempster’s rule [4] and obtain the BPA m1⊕m2,
which represents the combined evidence. Dempster referred to this rule as the product-
intersection rule, as the product of the BPA values are assigned to the intersection of the
focal elements, followed by normalization. Normalization consists of discarding the value
assigned to ∅, and normalizing the remaining values so that they add to 1. In general,
Dempster’s rule of combination can be used to combine two BPAs for arbitrary sets of
variables.

Projection of states simply means dropping extra coordinates; for example, if (x, y) is a
state of (X, Y ), then the projection of (x, y) to X, denoted by (x, y)↓X , is simply x, which
is a state of X.

Projection of subsets of states is achieved by projecting every state in the subset. Suppose
b ∈ 2ΩX,Y . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

Vacuous extension of a subset of states of X to a subset of states of (X, Y ) is a cylinder
set extension, i.e., if a ∈ 2ΩX , then a↑(X,Y ) = {a} × ΩY .

Earlier we defined a BPA for a variable X with state space ΩX . If X is a set of variables
with state space ΩX = ×X∈XΩX , then a BPA m for X is a function m : 2ΩX → [0, 1] such
that

m(∅) = 0, and∑
∅6=a∈2ΩX

m(a) = 1.

Suppose X1 and X2 are arbitrary (finite) sets of variables, and m1 and m2 are BPAs for
X1 and X2, respectively. Then m1 ⊕m2 is a BPA for X1 ∪ X2 = X given by:

(m1 ⊕m2)(a) =


0 if a = ∅,

K−1
∑

b1⊆X1, b2⊆X2: b↑X
1 ∩b↑X

2 = a

m1(b1)m2(b2) otherwise,
(17)

for all a ∈ 2ΩX , where K is a normalization constant given by:

K = 1−
∑

b1⊆X1, b2⊆X2: b↑X
1 ∩b↑X

2 = ∅

m1(b1)m2(b2). (18)
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The definition of Dempster’s rule assumes that the normalization constant K is non-zero.
If K = 0, then the two BPAs m1 and m2 are said to be in total conflict and cannot be
combined. If K = 1, we say m1 and m2 are non-conflicting.

Dempster’s rule can also be described in terms of CFs [21]. Suppose Q1 and Q2 are CFs
corresponding to BPAs m1 and m2, respectively. The CF Q1 ⊕ Q2 corresponding to BPA
m1 ⊕m2 is defined as follows:

(Q1 ⊕Q2)(a) =

1 if a = ∅,

K−1Q1(a↓X1)Q2(a↓X2) otherwise,
(19)

for all a ∈ 2ΩX , where K is a normalization constant given by:

K =
∑

∅6=a∈2
ΩX1∪X2

(−1)|a|+1Q1(a↓X1)Q2(a↓X2). (20)

It is shown in [21] that the normalization constant K in Eq. (20) is exactly the same as in
Eq. (18).

In terms of CFs, Dempster’s rule is pointwise multiplication of CFs followed by normal-
ization, which is similar to the probabilistic combination rule of pointwise multiplication of
probability potentials followed by normalization. Where as probability potentials for X are
functions from ΩX → [0, 1], CFs are functions from 2ΩX → [0, 1]. Also, while normalization
of probability potentials is achieved by dividing by the sum, normalization of CFs is achieved
by dividing by the Möbius sum (with alternating signs). This similarity with probability
theory is one of the motivation behind our definitions of entropy and conditional entropy in
Section 4.

Next, we define vacuous extension of BPAs and CFs.

Vacuous Extension of a BPA. Suppose mX is a BPA for X. Then the vacuous extension of
mX to (X, Y ), denoted by m

↑(X,Y )
X , is the BPA for (X, Y ) such that

m
↑(X,Y )
X (a↑(X,Y )) = mX(a), (21)

for all a ∈ 2ΩX , i.e., all focal elements of m
↑(X,Y )
X are vacuous extensions of focal elements

of mX to (X, Y ), and the corresponding focal elements have the same values. Notice that
vacuous extension can also be described in terms of Dempster’s rule as follows:

m
↑(X,Y )
X = mX ⊕ ιY . (22)

Vacuous Extension of a CF. Suppose QX is a CF for X. Then, the vacuous extension of
QX to (X, Y ), denoted by Q

↑(X,Y )
X , is the CF for (X, Y ) such that

Q
↑(X,Y )
X = QX ⊕QιY . (23)

Eq. (23) implies that if QX is parametrized by k parameters, and X ∈ X , then Q↑XX is
also parametrized by the same k parameters, i.e., vacuous extension does not create new
parameters (or distinct values).
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Marginalization. Marginalization in D-S theory is summation of values of BPAs. Suppose
m is a BPA for (X, Y ). Then, the marginal of m for X, denoted by m↓X , is a BPA for X
such that for each a ∈ 2ΩX ,

m↓X(a) =
∑

b∈2
ΩX,Y : b↓X= a

m(b). (24)

It follows from Eq. (24), that if m(b) > 0, then m↓X1(b↓X1) > 0, for all b ∈ 2ΩX .
The marginalization can also be defined in terms of CFs. Suppose Q is a CF for (X, Y ).

Then, for all a ∈ 2ΩX ,

Q↓X(a) =
∑

b∈2
ΩX,Y :b↓X=a

(−1)(|b|−|a|) Q(b). (25)

As in the case of a BPA, it can be shown that if Q(b) > 0, then Q↓X(b↓X) > 0.

3.3. Conditional belief functions

In probability theory, it is common to construct joint probability mass functions for a set
of variables by using conditional probability distributions. For example, we can construct
joint PMF for (X, Y ) by first assessing PMF PX of X, and conditional PMFs PY |x for Y ,
one for each x ∈ ΩX such that PX(x) > 0. Let PY |X denote a CPT for (X, Y ) such that
PY |X(x, y) = PY |x(y) for all (x, y) ∈ ΩX,Y such that PX(x) > 0. Then, PX,Y = PX ⊗ PY |X .
We can construct a joint BPA for (X, Y ) in a similar manner.

Consider a BPA mX for X and x ∈ ΩX such that mX({x}) > 0. Suppose that there
is a BPA for Y expressing our belief about Y if we know that X = x, and denote it by
mY |x. Notice that mY |x : 2ΩY → [0, 1], for which

∑
b∈2ΩY mY |x(b) = 1. We can embed this

conditional BPA for Y into a conditional BPA for (X, Y ), which is denoted by mx,Y , in the
way that the following four conditions hold:

1. mx,Y tells us nothing about X, i.e., m↓Xx,Y (ΩX) = 1.

2. mx,Y tells us nothing about Y , i.e., m↓Yx,Y (ΩY ) = 1.

3. If we combine mx,Y with the deterministic BPA mX=x for X such that mX=x({x}) = 1
using Dempster’s rule, and marginalize the result to Y we obtain mY |x, i.e., (mx,Y ⊕
mX=x)

↓Y = mY |x.

4. If we combine mx,Y with the deterministic BPA mX=x̄ for X (x̄ 6= x) such that
mX=x̄({x̄}) = 1 using Dempster’s rule, and marginalize the result to Y we obtain
the vacuous BPA for Y , i.e., (mx,Y ⊕mX=x̄)

↓Y = ιY .

One way to obtain such an embedding is suggested by Smets [28] (see also, Shafer [22],
Xu and Smets [31], and Almond [2]), called conditional embedding. It consists of taking each
focal element b ∈ 2ΩY of mY |x, and converting it to the corresponding focal element

({x} × b) ∪ ((ΩX \ {x})× ΩY ) ∈ 2ΩX,Y (26)

of mx,Y with the same mass. It is easy to confirm that this method of embedding satisfies
all four conditions mentioned above.
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Example 2 (Conditional embedding). Consider variables X and Y , with ΩX = {x, x̄} and
ΩY = {y, ȳ}. Suppose that mX is a BPA for X such that mX({x}) > 0 and mX({x̄}) > 0.
If we have a conditional BPA mY |x for Y given X = x as follows:

mY |x({y}) = 0.8,

mY |x(ΩY ) = 0.2,

then its conditional embedding into BPA mx,Y for (X, Y ) is

mx,Y ({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mx,Y (ΩX,Y ) = 0.2.

Similarly, if we have a conditional BPA mY |x̄ for Y given X = x̄ as follows:

mY |x̄({ȳ}) = 0.3,

mY |x̄(ΩY ) = 0.7,

then its conditional embedding into BPA mx̄,Y for (X, Y ) is

mx̄,Y ({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.3,

mx̄,Y (ΩX,Y ) = 0.7.

These two conditional BPAs, and their corresponding embeddings mx,Y and mx̄,Y are distinct,
and can be combined with Dempster’s rule of combination, resulting in the conditional BPA
mY |X = mx,Y ⊕mx̄,Y for (X, Y ) as follows:

mY |X({(x, y), (x̄, ȳ)}) = 0.24,

mY |X({(x, y), (x̄, y), (x̄, ȳ)}) = 0.56,

mY |X({(x, y), (x, ȳ), (x̄, ȳ)}) = 0.06,

mY |X(ΩX,Y ) = 0.14.

The reader can easily verify that mY |X has the following properties. First, m↓XY |X = ιX .

Second, m↓YY |X = ιY . Third, if we combine mY |X with deterministic BPA mX=x({x}) = 1 for

X, and marginalize the combination to Y , then we get mY |x, i.e., (mY |X⊕mX=x)
↓Y = mY |x.

Fourth, (mY |X ⊕mX=x̄)
↓Y = mY |x̄. Fifth, in the Dempster’s combination of mx,Y and mx̄,Y ,

the normalization constant K = 1. mY |X is the belief function equivalent of CPT PY |X in
probability theory.

Conditional embedding can also be described using CFs. Suppose we start with a CF
QX for X (with corresponding BPA mX for X), and want to get a conditional CF QY |X for
(X, Y ). The conditional CF QY |X may include only those non-vacuous conditional CF Qx,Y

for (X, Y ) such that mX({x}) > 0. If there is only one such conditional, then QY |X = Qx,Y .
If we have more than one, then QY |X is obtained by Dempster’s combination of all such
conditionals:

QY |X =
⊕

x∈ΩX :mX({x})>0

Qx,Y . (27)

11



Next, we combine CFs QX for X and QY |X for (X, Y ) to obtain the joint CF QX,Y for
(X, Y ), i.e., QX,Y = QX⊕QY |X . First, notice that from our method of construction of QX,Y ,
the normalization constant K in the Dempster combination of QX and QY |X is equal to one.
It follows from the definition of Dempster’s rule in Eq. (19) that

QX,Y (a) = QX(a↓X) ·QY |X(a), (28)

for all a ∈ 2ΩX . If a ∈ 2ΩX is such that QX(a↓X) > 0, then it follows from Eq. (28) that
QY |X(a) = QX,Y (a)/QX(a↓X). If a ∈ 2ΩX is such that QX(a↓X) = 0, then it follows from Eq.
(28) that QX,Y (a) = 0. If we restrict our attention to subsets in {b ∈ 2ΩX : QX,Y (b) > 0},
then

QY |X(a) = QX,Y (a)/QX(a↓X), (29)

for all a ∈ {b ∈ 2ΩX : QX,Y (b) > 0}.
We caution the reader that Eq. (29) is only valid for those joint CFs QX,Y for (X, Y )

that are constructed using Eq. (28). If we start with an arbitrary CF Q for (X, Y ) such
that Q(a) > 0 for all a ∈ 2ΩX,Y , compute the marginal CF Q↓X for X (using Eq. (25)), and
then construct a function QY |X using Eq. (29), then QY |X may fail to be a CF because the
condition in Eq. (15) is violated.

In summary, given any joint PMF PX,Y for (X, Y ), we can always factor this into PX
for X, and PY |X for (X, Y ), such that PX,Y = PX ⊗ PY |X . This is not true in D-S belief
function theory. Given a joint BPA mX,Y for (X, Y ), we cannot always find a belief function

mY |X for (X, Y ) such that mX,Y = m↓XX,Y ⊕mY |X . However, we can always construct joint
BPA mX,Y for (X, Y ) by first assessing mX for X, and assessing conditionals mY |xi for Y for
those xi that we have knowledge about and such that mX(xi) > 0, embed these conditionals
into conditional BPAs for (X, Y ), and combine all such BPAs to obtain the conditional BPA
mY |X for (X, Y ). We can then construct mX,Y = mX ⊕mY |X .

Suppose CF QX,Y is constructed from QX for X and conditional CF QY |X , i.e, QX,Y =
QX ⊕ QY |X . It is easy to confirm that, similarly to probability theory, for such joint CF,

QX = Q↓XX,Y , and

QY |X(a) = QX,Y (a)/QX(a↓X), (30)

for all a ∈ {b ∈ 2ΩX : QX(b) > 0}. Eq. (30) is the belief function analog of Eq. (4) in
probability theory.

This completes our brief review of the D-S belief function theory. For further details, the
reader is referred to [21].

4. A Decomposable Entropy for the D-S Theory

In this section, we provide a new definition of entropy of belief functions in the D-S
theory, and describe its properties. This new definition is designed to satisfy a compound
distributions property analogous to the compound distribution property that characterizes
Shannon’s entropy of PMFs.
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4.1. Definition of entropy for D-S belief functions

Definition 3 (Entropy of a CF QX). Suppose QX is a CF for X with state space ΩX . Then,
the entropy of QX , denoted by H(QX), is defined as

H(QX) =
∑

a∈2ΩX

(−1)|a|QX(a) log(QX(a)). (31)

The definition of entropy of QX in Eq. (31) is well-defined as it follows from the definition
of a CF in Eq. (12) that for all a ∈ 2ΩX that QX(a) ≥ 0. If QX(a) = 0, we will follow
the convention that QX(a) log(QX(a)) = 0 as limθ→0+ θ log(θ) = 0. Thus, in computing the
entropy H(QX) as defined in Def. 3, it is sufficient that the summation in the right-hand
side of Eq. (31) is restricted to a ∈ 2ΩX such that QX(a) > 0.

This is a new definition of entropy that has not been proposed earlier in the literature.
The closest definitions are due to Höhle [9], Smets [29], and Yager [32]. We will compare our
definition with these definitions in Section 7.

Example 3 (Entropy of Q). Suppose CF Q for X with state space ΩX = {x, x̄} is as follows:
Q(∅) = 1, Q({x}) = 0.7, Q({x̄}) = 0.4, and Q({x, x̄}) = 0.1. If mQ denotes the BPA
corresponding to Q, then notice that mQ({x}) = Q({x})−Q({x, x̄}) = 0.7− 0.1 = 0.6 ≥ 0,
mQ({x̄}) = Q({x̄})−Q({x, x̄}) = 0.4− 0.1 = 0.3 ≥ 0, and mQ({x, x̄}) = Q({x, x̄}) = 0.1 ≥
0. Also, Q({x}) +Q({x̄})−Q({x, x̄}) = 0.7 + 0.4− 0.1 = 1. Therefore, Q is a well-defined
CF. Then, H(Q) = −0.7 · log(0.7)− 0.4 · log(0.4) + 0.1 · log(0.1) ≈ 0.557.

If QX,Y is a joint CF for (X, Y ), then its entropy is defined as in Eq. (31), i.e.,

H(QX,Y ) =
∑

a∈2
ΩX,Y

(−1)|a|QX,Y (a) log(QX,Y (a)). (32)

We refer to H(QX,Y ) as the joint entropy of QX,Y .
Suppose QX,Y is a CF for (X, Y ) with state space ΩX ×ΩY . Suppose we observe X = a.

Let QX=a denote the CF for X corresponding to BPA mX=a for X such that mX=a({a}) = 1.
Let QY |a = (QX,Y ⊕QX=a)

↓Y denote the posterior CF for Y . Then, the posterior entropy of
QY |a is as in Eq. (31), i.e.,

H(QY |a) =
∑

a∈2ΩY

(−1)|a|QY |a(a) log(QY |a(a)). (33)

4.2. Conditional entropy

In Subsection 3.3, we showed that the conditional commonality function, if it exists, can
be expressed as QY |X(a) = QX,Y (a)/QX(a↓X) (see Eq. (29)). In this subsection, we will
define the conditional entropy of a conditional CF. It would be incorrect to use Eq. (31) to
compute the entropy of QY |X as our belief of X is not included in conditional CF QY |X .
We define the conditional entropy of QY |X similar to the definition of conditional entropy of
PY |X in the probabilistic case (see Eq. (6)).
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Definition 4 (Conditional entropy). Suppose QX is a CF for X, and suppose QY |X is a
conditional CF for (X, Y ). Then, the conditional entropy of QY |X , denoted by H(QY |X), is
defined as follows:

H(QY |X) =
∑

a∈2
ΩX,Y :QX(a↓X)>0

(−1)|a|QX(a↓X)QY |X(a) log(QY |X(a)). (34)

Notice that as QX(a↓X)QY |X(a) = QX,Y (a) for all a ∈ 2ΩX,Y , we can rewrite Eq. (34) as
follows:

H(QY |X) =
∑

a∈2
ΩX,Y :QX(a↓X)>0

(−1)|a|QX,Y (a) log(QY |X(a)) (35)

Next, we state and prove the main result of this paper.

Theorem 1 (Compound distributions). Suppose QX is a CF for X, and suppose QY |X is a
conditional CF for (X, Y ). Let QX,Y = QX ⊕QY |X . Then,

H(QX,Y ) = H(QX) +H(QY |X). (36)

Proof.

H(QX,Y ) =
∑

a∈2
ΩX,Y

(−1)|a|QX,Y (a) log (QX,Y (a))

=
∑

b∈2ΩX

∑
a∈2

ΩX,Y :a↓X=b

(−1)|a|QX,Y (a) log

(
QX,Y (a)

QX(b)

QX(b)

)
=

∑
b∈2ΩX

∑
a∈2

ΩX,Y :a↓X=b

(−1)|a|QX,Y (a) log (QX(b))

+
∑

b∈2ΩX

∑
a∈2

ΩX,Y :a↓X=b

(−1)|a|QX,Y (a) log

(
QX,Y (a))

QX(b)

)
=

∑
b∈2ΩX

∑
a∈2

ΩX,Y :a↓X=b

(−1)|b|(−1)|a|−|b|QX,Y (a) log (QX(b))

+
∑

b∈2ΩX

∑
a∈2

ΩX,Y :a↓X=b

(−1)|a|QX,Y (a) log
(
QY |X(a)

)
=

∑
b∈2ΩX

(−1)|b| log (QX(b))
∑

a∈2
ΩX,Y :a↓X=b

(−1)|a|−|b|QX,Y (a)

+
∑

a∈2
ΩX,Y

(−1)|a|QX,Y (a) log
(
QY |X(a)

)
=

∑
b∈2ΩX

(−1)|b| log (QX(b))QX(b) +H(QY |X) (using Eqs. (25), (35))

= H(QX) +H(QY |X).
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Corollary 1. Suppose QX is a CF for X, and QY is a CF for Y . Let QX,Y denote QX⊕QY .
Then H(QX,Y ) = H(QX) +H(QY ).

Proof. As QX,Y = QX ⊕QY , it follows from Dempster’s rule in Eq. (19) that
QX,Y (a) = QX(a↓X)QY (a↓Y ). Thus, QY |X(a) = QX,Y (a)/QX(a↓X) = QY (a↓Y ). Thus,

H(QY |X) =
∑

a∈2
ΩX,Y

(−1)|a|QX,Y (a) log(QY |X(a))

=
∑

a∈2
ΩX,Y

(−1)|a|QX(a↓X)QY (a↓Y ) log(QY (a↓Y ))

=
∑

b∈2ΩY

(−1)|b|QY (b) log(QY (b))
∑

a∈2
ΩX,Y :a↓Y =b

(−1)|a|−|b|QX(a↓X)

=
∑

b∈2ΩY

(−1)|b|QY (b) log(QY (b))

= H(QY )

Therefore, it follows from Theorem 1 that H(QX,Y ) = H(QX) +H(QY ).

Example 4 (Marginal, conditional, and joint entropy). Suppose BPA m for X is as in
Example 3, and suppose conditional BPAs mY |x and mY |x̄ are as follows:

mY |x({y}) = 0.8,mY |x({ȳ}) = 0.1,mY |x({y, ȳ}) = 0.1,

mY |x̄({y}) = 0.3,mY |x̄({ȳ}) = 0.6,mY |x̄({y, ȳ}) = 0.1.

The vacuous extension of m to (X, Y ), the conditional embedding of mY |x, and the conditional
embedding of mY |x̄ are shown in Table 1. The commonality functions corresponding to these
three BPAs are also shown in Table 1. As mY |X is obtained by mx,Y ⊕mx̄,Y , the correspond-
ing commonality function QmY |X (shown in Table 1 is obtained by pointwise multiplication
of Qmx,Y

and Qmx̄,Y
(the normalization constant K = 1). The commonality function corre-

sponding to mX,Y = m⊕mY |X , shown in the last column of Table 1, is obtained by pointwise
multiplication of Qm↑(X,Y ) and QmY |X (the normalization constant K = 1).

The entropies (rounded to 3 decimal places) in units of bits are as follows. H(m↑(X,Y )) ≈
0.557, which is the same as H(m), computed in Example 3. The entropies of conditional
BPAs H(mx,Y ) ≈ 0.161, H(mx̄,Y ) ≈ 0.167, and H(mY |X) ≈ 0.328. The computation of these
entropies involve Qm↑(X,Y ) (or Qm). Notice that H(mY |X) = H(mx,Y ) + H(mx̄,Y ). Finally,
the entropy H(mX,Y ) ≈ 0.885, which is equal to H(m)+H(mY |X). mX,Y is not a conditional
BPA, and therefore, H(mX,Y ) is computed only from QmX,Y

.

Next, we show that a probability model for (X, Y ) consisting of PMF PX for X (for
simplicity, we will assume that PX(x) > 0 for all x ∈ ΩX), and a CPT PY |X for Y given
X can be replicated exactly in the D-S theory using Bayesian BPA mX for X representing
PX , a conditional BPA mY |X for (X, Y ) representing PY |X . Furthermore, our definition of
entropy for all BPAs will coincide with Shannon’s entropy of the corresponding probabilistic
function.
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Table 1: BPAs, commonality functions, and entropies in Example 4

a m↑(X,Y ) mx,Y mx̄,Y Qm↑(X,Y ) Qmx,Y
Qmx̄,Y

QmY |X QmX,Y

{(x, y)} 0.7 0.9 1 0.9 0.63
{(x, ȳ)} 0.7 0.2 1 0.2 0.14
{(x, y), (x, ȳ)} 0.6 0.7 0.1 1 0.1 0.07
{(x̄, y)} 0.4 1 0.4 0.4 0.16
{(x̄, ȳ)} 0.4 1 0.7 0.7 0.28
{(x̄, y), (x̄, ȳ)} 0.3 0.4 1 0.1 0.1 0.04
{(x, y), (x̄, y)} 0.1 0.9 0.4 0.36 0.036
{(x, y), (x̄, ȳ)} 0.1 0.9 0.7 0.63 0.063
{(x, ȳ), (x̄, y)} 0.1 0.2 0.4 0.08 0.008
{(x, ȳ), (x̄, ȳ)} 0.1 0.2 0.7 0.14 0.014
{(x, y), (x, ȳ), (x̄, y)} 0.3 0.1 0.1 0.4 0.04 0.004
{(x, y), (x, ȳ), (x̄, ȳ)} 0.6 0.1 0.1 0.7 0.07 0.007
{(x, y), (x̄, y), (x̄, ȳ)} 0.8 0.1 0.9 0.1 0.09 0.009
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.1 0.1 0.2 0.1 0.02 0.002
ΩX,Y 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.001
H 0.557 0.161 0.167 0.328 0.885

Suppose PX is a PMF for X such that PX(x) > 0 for all x ∈ ΩX , and PY |X is a CPT
for Y given X, i.e., PY |X(x, y) = PY |x(y), where PY |x is the conditional PMF for Y given
X = x for all (x, y) ∈ ΩX,Y . Let PX,Y = PX ⊗ PY |X . Let mX denote the Bayesian BPA
corresponding to PX , let mY |x denote the Bayesian conditional BPA for Y corresponding to
conditional PMF PY |x for Y given X = x. Let mx,Y denote the conditional BPA for (X, Y )
obtained by conditional embedding of mY |x. Let mY |X denote

⊕
x∈ΩX

mx,Y . Let mX,Y denote
mX ⊕mY |X .

Theorem 2 (Strong probability consistency). Consider the situation described in the pre-
ceding paragraph. Then, mX,Y is a Bayesian BPA for (X, Y ) corresponding to PMF PX,Y
such that:

H(mX,Y ) = Hs(PX,Y ), (37)

H(mX) = Hs(PX), (38)

H(mY |X) = Hs(PY |X). (39)

Notice that mx,Y and mY |X are not Bayesian BPAs.

Proof. It follows from our construction that mX,Y is a Bayesian BPA corresponding to PX,Y .
For a Bayesian BPA m corresponding to PMF P , Qm({x}) = m({x}) = P (x), and for
non-singleton subsets a, Qm(a) = 0. Therefore, it follows that H(m) = Hs(P ). This
property is called “probability consistency” [16]. As mX and mX,Y are Bayesian BPAs,
Eqs. (37) and (38) hold. It follows from Shannon’s definition of entropy of PX and PX,Y ,
and conditional entropy of PY |X that Hs(PX,Y ) = Hs(PX) + Hs(PY |X). It follows from the
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Table 2: BPAs, commonality functions, and entropies in Example 5

a m
↑(X,Y )
X mx,Y mx̄,Y Q

m
↑(X,Y )
X

Qmx,Y
Qmx̄,Y

QmY |X QmX,Y

{(x, y)} 0.6 0.8 1 0.8 0.48
{(x, ȳ)} 0.6 0.2 1 0.2 0.12
{(x, y), (x, ȳ)} 0.6 0.6 1
{(x̄, y)} 0.4 1 0.3 0.3 0.12
{(x̄, ȳ)} 0.4 1 0.7 0.7 0.28
{(x̄, y), (x̄, ȳ)} 0.4 0.4 1
{(x, y), (x̄, y)} 0.8 0.3 0.24
{(x, y), (x̄, ȳ)} 0.8 0.7 0.56
{(x, ȳ), (x̄, y)} 0.2 0.3 0.06
{(x, ȳ), (x̄, ȳ)} 0.2 0.7 0.14
{(x, y), (x, ȳ), (x̄, y)} 0.3 0.3
{(x, y), (x, ȳ), (x̄, ȳ)} 0.7 0.7
{(x, y), (x̄, y), (x̄, ȳ)} 0.8 0.8
{(x, ȳ), (x̄, y), (x̄, ȳ)} 0.2 0.2
ΩX,Y

H 0.971 0.433 0.353 0.786 1.757

compound distributions property that H(mX,Y ) = H(mX)+H(mY |X). Thus, Eq. (39) must
hold also.

Example 5 (Strong probability consistency). Consider the PMFs PX , PY |x, and PY |x̄ as in
Example 1. mX is a Bayesian BPA corresponding to PX , and its vacuous extension to (X, Y )
is shown in the second column of Table 2. Although mX is Bayesian, its vacuous extension
is not Bayesian. Let mx,Y denote the conditional embedding of Bayesian BPA mY |x that
corresponds to PY |x (it is shown in the third column). Similarly, mx̄,Y is shown in the fourth

column. The commonality functions corresponding to m
↑{X,Y }
X , mx,Y , and mx̄,Y are shown in

the next three columns. QmY |X is obtained by Dempster’s combination of Qmx,Y
and Qmx̄,Y

(the normalization constant K = 1). Notice that mY |X is not Bayesian. Finally, QmX,Y

is obtained by Dempster’s combination of Q
m

↑{X,Y }
X

and QmY |X (the normalization constant

K = 1). mX,Y is a Bayesian BPA.

The entropies H(m
↑(X,Y )
X ), H(mx,Y ), and H(mx̄,Y ) are shown in the last row (to 3 decimal

places). Notice that H(mX) = H(m
↑{X,Y }
X ) = Hs(PX) ≈ 0.971, H(mY |X) = Hs(PY |X) ≈

0.786, and H(mX,Y ) = Hs(PX,Y ) ≈ 1.757.

4.3. Conditional and posterior entropy

Suppose QX,Y is a joint CF for (X, Y ). Let QX denote the marginal CF for X computed

from QX,Y , QX = Q↓XX,Y . Let mX denote the BPA for X corresponding to CF QX . Now
consider the situation where we observe X = x for some x ∈ ΩX such that mX({x}) > 0.
Let mX=x denote the deterministic BPA for X such that mX=x({x}) = 1, and let QX=x
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denote the corresponding CF for X . The posterior CF for Y , denoted by QY |x, is given
by QY |x = (QX,Y ⊕ QX=x)

↓Y . The entropy of QY |x is described by Eq. (33), which is given
by Def. 3 applied to CF QY |x for Y . Now, suppose we consider QY |x as a CF for Y in the
context X = x and conditionally embed it obtaining CF Qx,Y for (X, Y ). We can consider
CF Qx,Y as a conditional for Y given X = x. As discussed earlier, we cannot use Def. 3 to
compute the entropy of Qx,Y as the belief of X = x is not included in CF Qx,Y . Instead, we
use Eq. (34) in Def. 4 to compute the entropy H(Qx,Y ), which reads in this context as

H(Qx,Y ) =
∑

a∈2
ΩX,Y

(−1)|a|QX(a↓X)Qx,Y (a) log(Qx,Y (a)). (40)

So a natural question that arises is: What is the relationship between posterior entropy
H(QY |x) and conditional entropy H(Qx,Y )? In what follows, we will describe this relationship
for the special case where X and Y are binary-valued variables.

Theorem 3 (Conditional Entropy 1). Suppose X and Y are binary-valued variables. Suppose
mX is a BPA for X such that mX({x}) > 0. Suppose mY |x denotes the posterior BPA
for Y given X = x, and let QY |x denote the corresponding CF for Y . Let mx,Y denote
the conditional BPA for (X, Y ) obtained from mY |x by conditional embedding, and let Qx,Y

denote the corresponding CF. Then,

H(Qx,Y ) = mX({x})H(QY |x). (41)

Proof. Suppose ΩX = {x, x̄}, and ΩY = {y, ȳ}. Suppose QX is as follows: QX({x}) = a,
QX({x̄}) = b, and QX({x, x̄}) = c, where a > c ≥ 0, b ≥ c, and a + b − c = 1. Let mX

denote the BPA corresponding to QX . Then, mX({x}) = a − c, mX({x̄}) = b − c, and
mX({x, x̄}) = c. Also, suppose that QY |x is as follows: QY |x({y}) = d, QY |x({ȳ}) = e,
and QY |x({y, ȳ}) = f , where d ≥ f ≥ 0, e ≥ f , and d + e − f = 1. Let mY |x denote
the BPA corresponding to CF QY |x. Thus, mY |x({y}) = d − f , mY |x({ȳ}) = e − f , and
mY |x({y, ȳ}) = f .

From Eq. (33), it follows that H(mY |x) = −d log(d)− e log(e) + f log(f). Consider Table
3. We make the following observations.

Consider a partition of 2ΩX,Y as follows: Let b{x} denote {a ∈ 2ΩX,Y : a↓X = {x}}.
Similarly we define b{x̄}, and bΩX

. From Eq. (12), it follows that Qm↑(X,Y )(a) = a for
a ∈ b{x}, Qm↑(X,Y )(a) = b for a ∈ b{x̄}, and Qm↑(X,Y )(a) = c for a ∈ bΩX

.
Next, consider a refinement of the partition {b{x}, b{x̄}, bΩX

} as follows: Let b{x}×{y} =
{a ∈ b{x} : a↓Y = {y}}. Similarly, we define b{x}×{ȳ}, and b{x}×ΩY

. Similarly, we parti-
tion b{x̄} into b{x̄}×{y}, b{x̄}×{ȳ}, and b{x̄}×ΩY

, and partition bΩX
into bΩX×{y}, bΩX×{ȳ}, and

bΩX×ΩY
. It follows from the definition of conditional embedding of mY |x into mx,Y that the

values of Qmx,Y
are as shown in Table 3. The rows in this table are arranged by the partition

{b{x}, b{x̄}, bΩX
} with each set separated by a solid horizontal line, and the refinement of this

partition is shown using dashed lines. First, notice that Qmx,Y
(a) = 1 for all a ∈ b{x̄}. This

is because (mx,Y ⊕mX=x′)
↓Y = ιY for all x′ ∈ ΩX such that x′ 6= x. Second, Qmx,Y

(a) = d
for a ∈ b{x}×{y}, Qmx,Y

(a) = e for a ∈ b{x}×{ȳ}, and Qmx,Y
(a) = f for a ∈ b{x}×{y,ȳ}.
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Table 3: BPAs, and CFs in Theorem 3

a ∈ 2ΩX,Y mX(a↓x) mx,Y (a) QX(a↓x) Qx,Y (a)
{(x, y)} a d
{(x, ȳ)} a e
{(x, y), (x, ȳ)} a− c a f
{(x̄, y)} b 1
{(x̄, ȳ)} b 1
{(x̄, y), (x̄, ȳ)} b− c b 1
{(x, y), (x̄, y)} c d
{(x, ȳ), (x̄, ȳ)} c e
{(x, y), (x̄, ȳ)} c d
{(x, ȳ), (x̄, y)} c e
{(x, y), (x, ȳ), (x̄, y)} c f
{(x, y), (x, ȳ), (x̄, ȳ)} c f
{(x, y), (x̄, y), (x̄, ȳ)} d− f c d
{(x, ȳ), (x̄, y), (x̄, ȳ)} e− f c e
ΩX,Y c f c f

The conditional entropy H(Qx,Y ) is computed as follows. Let H(Qx,Y )|b{x} denote the
portion of H(Qx,Y ) from subsets in b{x}, etc. It follows from our observations above that:

H(Qx,Y )|b{x} = a(−d log(d)− e log(e) + f log(f)) = aH(mY |x), and

H(Qx,Y )|b{x̄} = 0.

Also,
H(Qx,Y )|b{x,x̄} = −c(−d log(d)− e log(e) + f log(f)) = −cH(mY |x).

Thus,
H(Qx,Y ) = (a− c)H(QY |x) = mX(x)H(QY |x).

If ΩX = {x, x̄} and assuming mX(x̄) > 0, it follows from Eq. (34) that conditional
entropy of CF Qx̄,Y is given by

H(Qx̄,Y ) =
∑

a∈2
ΩX,Y

(−1)|a|QX(a↓X)Qx̄,Y (a) log(Qx̄,Y (a)).

If Y is also binary, then it follows from Theorem 3 that

H(mx̄,Y ) = mX({x̄})H(mY |x̄). (42)

Also, as the contexts in mx,Y and mx̄,Y are disjoint, and the beliefs of the contexts are
described by the same BPA mX such that mX(x) > 0 and mX(x̄) > 0, we have the following
result.
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Table 4: BPAs, and CFs in Theorem 4

a m
↑(X,Y )
X mx,Y mx̄,Y Q

m
↑(X,Y )
X

Qmx,Y Qmx̄,Y QmY |X QmX,Y

{(x, y)} a d 1 d a · d
{(x, ȳ)} a e 1 e a · e
{(x, y), (x, ȳ)} a− c a f 1 f a · f
{(x̄, y)} b 1 g g b · g
{(x̄, ȳ)} b 1 h h b · h
{(x̄, y), (x̄, ȳ)} b− c b 1 i i b · i
{(x, y), (x̄, y)} c d g d · g c · d · g
{(x, y), (x̄, ȳ)} c d h d · h c · d · h
{(x, ȳ), (x̄, y)} c e g e · g c · e · g
{(x, ȳ), (x̄, ȳ)} c e h e · h c · e · h
{(x, y), (x, ȳ), (x̄, y)} g − i c f g f · g c · f · g
{(x, y), (x, ȳ), (x̄, ȳ)} h− i c f h f · h c · f · h
{(x, y), (x̄, y), (x̄, ȳ)} d− f c d i d · i c · d · i
{(x, ȳ), (x̄, y), (x̄, ȳ)} e− f c e i e · i c · e · i
ΩX,Y c f i c f i f · i c · f · i

Theorem 4 (Conditional Entropy 2). Suppose X and Y are binary-valued variables. Suppose
mX is a BPA for X such that mX(x) > 0 and mX(x̄) > 0. Suppose Qx,Y and Qx̄,Y are
conditional CFs for Y given X = x and X = x̄, respectively. Let QY |X denote Qx,Y ⊕Qx̄,Y .
Then,

H(QY |X) = mX({x})H(Y |x) +mX({x̄})H(Y |x̄). (43)

Notice that the result in Eq. (43) is analogous of the definition of conditional entropy in Eq.
(6) in the probabilistic case.

Proof. Let ΩX = {x, x̄} and Ωy = {y, ȳ}. Let QmX
({x}) = a, QmX

({x̄}) = b, and
QmX

(ΩX) = c, where a > c ≥ 0, b > c and a+b−c = 1. Let QmY |x({y}) = d, QmY |x({ȳ}) = e,
and QmY |x({y, ȳ}) = f , such that d ≥ f ≥ 0, e ≥ f , and d + e − f = 1. Finally, let
QmY |x̄({y}) = g, QmY |x̄({ȳ}) = h, and QmY |x̄({y, ȳ}) = i, where g ≥ i ≥ 0, h ≥ i and
g+h− i = 1. Given these 9 parameters, the various BPA and CFs are shown in Table 4. In
this table, mx,Y is obtained by conditional embedding of mY |x, mx̄,Y is obtained by condi-
tional embedding of mY |x̄, QmY |X is obtained by Dempster combination of Qmx,Y

and Qmx̄,Y
.

Given that mx,Y and mx̄,Y are obtained by conditional embedding, and the intersection of a
focal element of mx,Y with a focal element of mx̄,Y is always non-empty, the normalization
constant K in the Dempster combination for these two BPAs is equal to 1.

Consider the partition of 2ΩX,Y as described in the proof of Theorem 4. Notice from Table
4 that:

H(mY |X)|b{x} = a(−d log(d)− e log(e) + f log(f))

= aH(mY |x) (44)

Similarly, we can show that
H(mY |X)|b{x̄} = bH(mY |x̄) (45)
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Finally,

H(mY |X)|b{x,x̄} = c((d · g) log(d · g) + (d · h) log(d · h) + (e · g) log(e · g))

+c((e · h) log(e · h)− (f · g) log(f · g)− (f · h) log(f · h))

−c((d · i) log(d · i)− (e · i) log(e · i) + (f · i) log(f · i))
= −c((−d log(d))(g + h− i)− (e log(e))(g + h− i))
−c(f log(f))(g + h− i))
−c((−g log(g))(d+ e− f)− h log(h)(d+ e− f))

−c(i log(i)(d+ e− f))

= −c (H(mY |x) +H(mY |x̄)) (46)

Thus,

H(mY |X) = aH(mx,Y ) + bH(mx̄,Y )− c(H(mmY |x) +H(mY |x̄))

= (a− c)H(mY |x) + (b− c)H(mY |x̄)

= H(mx,Y ) +H(mx̄,Y )

= mX({x})H(mY |x) +mX({x̄})H(mY |x̄) (47)

We have stated and proved Theorems 3 and 4 only for the case of binary-valued variables
X and Y . We do not have a proof for the general case.

5. Other Properties of Entropy for D-S Belief Functions

Some properties of our definition in Eq. (31) are as follows.

1. (Non-negativity) Suppose m is a BPA for X and suppose |ΩX | = 2. Then, H(m) ≥ 0.

Proof. Let m({x1}) = p, m({x2}) = q, and m(ΩX) = 1 − p − q, where 0 ≤ p, 0 ≤ q,
and p + q ≤ 1. In this case, H(m) = −(1 − q) log(1 − q) − (1 − p) log(1 − p) +
(1 − p − q) log(1 − p − q). It is easy to verify that H(m) = 0 if p = 0 or q = 0, and
∂
∂p
H(m) = log(1−p)− log(1−p−q) ≥ 0, and ∂

∂q
H(m) = log(1−q)− log(1−p−q) ≥ 0.

Thus, H(m) ≥ 0.

For |ΩX | > 2, H(m) does not satisfy the non-negativity property as shown in Example
6.

Example 6 (Negative entropy). Consider a BPA m for X with ΩX = {a, b, c} such
that

m({a, b}) = m({a, c}) = m({b, c}) =
1

3
.

Then Qm is as follows:

Qm({a}) = Qm({b}) = Qm({c}) =
2

3
,
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Qm({a, b}) = Qm({a, c}) = Qm({b, c}) =
1

3
, and

Qm({a, b, c}) = 0.

Then it follows that H(m) = −3 · 2
3

log(2
3
) + 3 · 1

3
log(1

3
) = log(3

4
) ≈ −0.415.

Suppose m is a BPA for X with n = |ΩX |. We conjecture that

H(m) ≥ log

(
n

2(n− 1)

)
.

This is based on a BPA m whose focal elements are only doubleton subsets with
equal probabilities. If the conjecture is true, H(m) would be on the scale from
[log( n

2(n−1)
), log(n)], where n = |ΩX |, n ≥ 3. Also, as

lim
n→∞

log

(
n

2(n− 1)

)
= −1,

H(m) would be on the scale (−1,∞)). Lack of non-negativity is not a serious draw-
back. Shannon’s definition of entropy for continuous random variables characterized
by probability density functions can be negative [25].

2. (Quasi-consonant) Supposem is a BPA forX. Ifm is quasi-consonant, thenH(m) = 0.
As consonant BPAs are also quasi-consonant, H(m) = 0 for consonant BPAs.

Proof. We will prove this property for the case |ΩX | = 3 (from which the idea for the
proof for a general state space will be almost obvious). Suppose ΩX = {x, y, z}, and
suppose m is quasi-consonant. Therefore, there exists x ∈ ΩX such that x belongs to
all focal elements of m. Let Q denote the CF for X corresponding to BPA m. First,
it is clear that Q({x}) = 1. Moreover, for the remaining elements y, z of ΩX it holds

Q({y}) =
∑

a∈2ΩX :a⊇{y}

m(a) =
∑

a∈2ΩX :a⊇{x,y}

m(a) = Q(X, Y ),

and in the same way also Q({z}) = Q({x, z}). Similarly, we can show that Q({y, z}) =
Q({x, y, z}), and therefore

H(m) = −Q({x}) log(Q({x}))
+ (−Q({y}) log (Q({y})) +Q({x, y}) log(Q({x, y})))
+ (−Q({z}) log(Q({z})) +Q({x, z}) log(Q({x, z})))
+ (Q({y, z}) log(Q({y, z}))−Q({x, y, z}) log(Q({x, y, z})))

= 0.

For a general ΩX , the proof is similar. It is enough to realize that Qm({x}) = 1, and
that for all a ∈ 2ΩX such that x 6∈ a it holds that Qm(a) = Qm(a∪{x}). If we exclude
the singleton {x}, the mapping between sets containing x and those, which do not
contain x is a bijection. Moreover, |a∪{x}| = |a|+1, and therefore for all b ∈ 2ΩX there
exist another set b′ ∈ 2ΩX (b and b′ differ from each other only in that one contains x,
the other does not contain it), which contribute to the sum defining H(m) by the same
value but with different signs. Therefore H(m) = −Qm({x}) log(Qm({x})) = 0.
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3. (Vacuous extension) Vacuous extension of a CF does not change its entropy. If QX is

a CF for X, and Q
↑(X,Y )
X is the vacuous extension of QX to (X, Y ), then H(Q

↑(X,Y )
X ) =

H(QX).

Proof. As stated in Section 3.2, vacuous extension can be stated in terms of Dempster’s
rule as follows. Suppose QX is a CF for X. Then, Q

↑(X,Y )
X = QX⊕QιY , where ιY is the

vacuous CF for Y . It follows from Corollary 1 that H(Q
↑(X,Y )
X ) = H(QX) +H(QιY ) =

H(QX).

Vacuous extension is a mathematical operation that has no bearing on the knowledge
encoded in QX . The knowledge that is encoded in QX is exactly the same as the
knowledge that is encoded in Q

↑(X,Y )
X . Thus, it is reassuring that our definition of

entropy assigns the same value to both.

4. (Mutually disjoint focal elements2) Suppose m is a BPA for X with state space ΩX .
Suppose the focal elements of m are mutually disjoint. Then,

H(m) =
∑

a∈2ΩX

(−1)|a|Qm(a) log(Qm(a)) = −
∑

a∈2ΩX

m(a) log(m(a)) (48)

Proof. As the focal elements of m are mutually disjoint, the value m(a) (of m for focal
set a) will only influence the values of Qm(b) for ∅ 6= b ⊆ a. For non-empty subsets b
such that b * a for any focal set a of m, Qm(b) = 0. Thus, it suffices to show that for
a focal set a of m,∑

∅6=b⊆a

(−1)|b|Qm(b) log(Qm(b)) = −m(a) log(m(a)). (49)

Notice that for a focal set a of m, for some b such that ∅ 6= b ⊆ a, Qm(b) = m(a).
Thus, ∑

∅6=b⊆a

(−1)|b|Qm(b) log(Qm(b)) = m(a) log(m(a))
∑
∅6=b⊆a

(−1)|b|

= −m(a) log(m(a)) (50)

Eq. (50) follows from the binomial expansion of (a− b)|a| where a = b = 1.

5.1. Computing entropy of a graphical model

In Section 1, we made some remarks about the advantages of decomposable entropy. We
will demonstrate this by means of a small graphical model with three binary variables. We
will compute the joint entropy of the graphical model without computing the joint belief
function, using local computation as described in [27].

2This property was suggested by an anonymous reviewer (Reviewer #1) of the first submission of this
paper to International Journal of Approximate Reasoning.
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Example 7 (Computing entropy of a graphical model). We have to meet a colleague at
Kansas City airport (MCI), who is flying out of Los Angeles (LAX). The flight has a layover
in Denver (DEN). Consider the following variables: ODLAX (on-time departure from LAX)
with possible values 1 (true) and 0 (false). Similarly, we have Boolean variables ODDEN

(on-time departure from DEN) and OAMCI (on-time arrival at MCI). Clearly, ODLAX and
OAMCI are conditionally independent given ODDEN . So, we have a directed acyclic graphical
model: ODLAX → ODDEN → OAMCI . We assume we have the following BPAs/conditional
BPAs:

• mL for ODLAX : mL({1}) = 0.6, mL({0}) = 0.3, mL({1, 0}) = 0.1.

• mD|1 for ODDEN given ODLAX = 1: mD|1({1}) = 0.8, mD|1({0}) = 0.1,
mD|1({1, 0}) = 0.1.

• mD|0 for ODDEN given ODLAX = 0: mD|0({1}) = 0.1, mD|0({0}) = 0.8,
mD|0({1, 0}) = 0.1.

• mM |1 for OAMCI given ODDEN = 1: mM |1({1}) = 0.9, mM |1({0}) = 0.05,
mM |1({1, 0}) = 0.05.

• mM |0 for OAMCI given ODDEN = 0 is vacuous, i.e., mM |0({1, 0}) = 1.

Let m1,D denote the BPA for (ODLAX , ODDEN) after conditional embedding of mD|1. Simi-
larly, we have m0,D for (ODLAX , ODDEN), and m1,M and m0,M for (ODDEN , OAMCI). Let
m denote the joint BPA for (ODLAX , ODLAX , OAMCI), i.e., m = mL⊕m1,D⊕m0,D⊕m1,M⊕
m0,M . It follows from Theorem 1 that H(m) = H(mL) +H(m1,D) +H(m0,D) +H(m1,M) +
H(m0,M). We can compute H(m1), H(m1,D) and H(m0,D) directly using Definitions 3 and
4.

To compute H(m1,M) and H(m0,M) using Definition 4, we need the marginal BPA for
ODDEN . This can be done using local computation. If we marginalize OAMCI from m1,M ⊕
m0,M , we get the vacuous BPA for ODDEN as both m1,M and m0,M are conditionals. Next we
marginalize ODLAX from mL⊕m1,D⊕m0,D, obtaining the marginal BPA for ODDEN , which
can then be used for computing H(m1,M) and H(m0,M) (using Definition 4). Let mD denote
the marginal BPA for ODDEN . The results are as follows (rounded to 3 decimal places):

• H(mL) ≈ 0.557, H(m1,D) ≈ 0.161, H(m0,D) ≈ 0.081.

• mD({1}) = 0.518, mD({0}) = 0.308, mD({1, 0}) = 0.174.

• H(m1,M) ≈ 0.097, H(m0,M) = 0.

Thus, the joint entropy of the graphical model is: H(m) ≈ 0.557+0.161+0.081+0.097+
0 = 0.895.

6. Semantics of Our Definition of Entropy

In previous sections, we have provided a mathematical definition of entropy of D-S belief
functions, and some of its mathematical properties. In this section, we discuss the meaning
of our definition of entropy and its significance.
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Mathematical information theory was introduced by Claude Shannon in 1948 in the
context of a theory of communication [25]. He starts with an information source consisting
of a alphabet, i.e., a finite set of n symbols, and corresponding probabilities p1, . . . , pn. He
poses the question of constructing a measure H(p1, . . . , pn) of “how much choice is involved
in the selection of an event” or “how uncertain we are of the outcome.” He postulates three
assumptions, called continuity, monotonicity, and compound distributions (as described in
Section 2), and using these assumptions proves a theorem that the only function H that
satisfies the three assumptions is H(p1, . . . , pn) = −K

∑n
i=1 pi log(pi), where K is a positive

constant that depends merely on the choice of units of measurement. Thus, Shannon’s
entropy H(p1, . . . , pn) has two key semantics: a measure of the choice involved in the selection
of a symbol from the given alphabet, which corresponds to the expected information received
when learning a symbol from the alphabet, and a measure of the uncertainty in the outcome
(of a random variable described by the PMF (p1, . . . , pn)).

Given a PMF PX of X with state space ΩX , Shannon’s states a number of properties of
the definition of H(PX) that reinforces the semantic that H(PX) is a measure of uncertainty
in PMF PX .

1. H(PX) = 0 if and only if there is a x ∈ ΩX such that PX(x) = 1. Otherwise it is
positive.

2. H(PX) has its maximum value (of log(n)) when PX is the equally-likely PMF (with
PX(x) = 1/n for each x ∈ ΩX).

3. Any change in PX that makes it more equal will increase its uncertainty. Thus, if
PX(x1) < PX(x2), and we increase PX(x1) (by an amount smaller than PX(x2) −
PX(x1)) and decrease PX(x2) by an equal amount so that PX(x1) and PX(x2) are more
nearly equal, then H(PX) will increase.

4. Suppose PX,Y is a joint PMF of (X, Y ) with marginals PX for X and PY for Y . Then,
H(PX,Y ) ≤ H(PX) + H(PY ), with equality only if X and Y are independent, i.e.,
PX,Y (x, y) = PX(x) · PY (y), for all (x, y) ∈ ΩX ×ΩY . Thus, the uncertainty in PX,Y is
less than or equal to the sum of the individual uncertainties.

5. Shannon defines conditional entropy of PY |X as in Def. 2, which is a measure of uncer-
tainty in Y on an average when X is known, and shows that H(PY |X) = H(PX,Y ) −
H(PX). Thus, H(PX,Y ) = H(PX) + H(PY |X), i.e., the uncertainty in PX,Y is the
uncertainty in PX plus the uncertainty in PY |X .

6. From the fourth and fifth properties, it follows that the uncertainty in PY is greater
than or equal to the uncertainty in PY |X , i.e., the uncertainty in PY is never increased
by knowledge of X.

Bronevich and Klir [3] argue that Shannon’s entropy H(PX) can also be interpreted as a
measure of dissonance (or conflict). Their argument goes as follows. H(PX) can be written
as

H(PX) = −
∑
x∈ΩX

PX(x) log

(
1−

∑
y 6=x

PX(y)

)
. (51)

For each x ∈ ΩX , the term
∑

y 6=x PX(y) represents the total probability that conflicts with
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Figure 1: Two measures of dissonance. If p denotes
∑

y 6=x PX(y), then the linear function is p, and the
non-linear function is − log(1− p). The x-axis has values of p ∈ (0, 1).

the probability PX(x) of state x. The function

Dis(x) = − log

(
1−

∑
y 6=x

PX(y)

)
(52)

expresses the same conflict, but on a different scale (see Fig. 1). Thus, from Eqs. (51) and
(52), Shannon’s entropy of PX measures the expected value of dissonance in PMF PX .

Now, notice that all six properties of H(PX) listed in the previous paragraph reinforce
the idea that H(PX) is a measure of dissonance in PX .

1. There is no dissonance in PX if there exists x ∈ ΩX such that PX(x) = 1.
2. There is maximum dissonance in an equally-likely PMF.
3. Any change in PX that makes it more equal will increase its dissonance.
4. Suppose PX,Y is a joint PMF of (X, Y ) with marginals PX for X and PY for Y . Then

the dissonance in PX,Y is less than or equal to the sum of the dissonance of PX and
PY , with equality only if X and Y are independent.

5. The dissonance in PX,Y is equal to the dissonance in PX plus the dissonance in PY |X .
6. The dissonance in PY is greater than or equal to the dissonance in PY |X , i.e., the

dissonance is never increased by knowledge of X.

In probability theory, we are unable to distinguish between the semantics of uncertainty
and the semantics of dissonance. In the D-S theory, the two semantics diverge. We have
maximum uncertainty in the vacuous BPA ιX for X, but we have low (zero) dissonance. Vac-

uously extending BPA mX for X to BPA m
↑(X,Y )
X for (X, Y ) does not increase its dissonance,

but may increase its uncertainty. Quasi-consonant BPAs have low (zero) dissonance. It is
our conjecture that the BPA with the smallest dissonance is the one where the focal elements
are all doubletons with equal probabilities. Dissonance is measured on the scale (−1,∞).
Thus, negative entropy means lower dissonance than zero entropy, and zero entropy is lower
than positive entropy.

In summary, our definition of entropy is a measure of dissonance, and not uncertainty.
While we cannot distinguish between uncertainty and dissonance for probability theory, the
semantics of these two terms diverge for the D-S theory. It is also our contention that the
notion of dissonance is more fundamental in the D-S theory (in the sense that it decomposes)
than the notion of uncertainty.
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7. Comparison with Other Measures of Dissonance

In this section, we compare our definition of entropy with some definitions from the
literature that are similar to ours in the sense that entropy is a measure of dissonance rather
than uncertainty.

7.1. Comparison with Höhle’s definition

Höhle [9] was one of the earliest to define entropy of a BPA.

Definition 5. Suppose m is a BPA for X. Höhle’s entropy of m, denoted by Ho(m), is
defined as follows:

Ho(m) = −
∑

a∈2ΩX

m(a) log(Belm(a)). (53)

Notice that the summation in Eq. (53) can be restricted to the set of focal elements of
m.

Some properties of Höhle’s definition of entropy are as follows. Ho(m) = 0 if and only
if m is deterministic [5]. Thus, Ho(ιX) = 0, but Ho(m) is not necessarily 0 for consonant
BPAs m. Ho(m) is maximal (= log(|ΩX |) for the equiprobable Bayesian BPA mu for X [5].
There is no definition of conditional entropy, so the question of satisfaction of the compound
distribution property is moot.

7.2. Comparison with Yager’s definition

Yager [32] proposes several measures of entropy for D-S belief functions and describes
their properties. The definition that is closest to ours is based on a BPA and plausibility
function representation of a belief function.

Definition 6 (Yager’s definition of entropy). Suppose m is a BPA for X with state space
ΩX , and let Plm denote the plausibility function corresponding to m. Then, Yager’s entropy
of m, denoted by Hy(m) is defined as follows:

Hy(m) = −
∑

a∈2ΩX

m(a) log(Plm(a)), for all a ∈ 2ΩX . (54)

Notice that the summation in Eq. (54) can be restricted to the set of focal elements of
m.

Yager’s entropy has the following properties:

1. Hy(m) ≥ 0. This follows from Eq. (54) and the fact that m(a) ≥ 0, and 0 ≤ Plm(a) ≤
1.

2. If m is a consonant BPA, then Hy(m) = 0. This is because for focal elements of m,
Pl(a) = 1, and therefore, log(Pl(a)) = 0, and for non-focal elements of m, m(a) = 0.

3. If BPA m is such that for every pair of focal elements ai and aj of m, ai∩aj 6= ∅, then
Hy(m) = 0. For such BPAs, if ai is a focal element of m, then Plm(ai) = 1.

4. If mu is an equiprobable Bayesian BPA for X, then Hy(mu) = log(|ΩX |). It is shown
in [32] that Hy(m) ≤ log(|ΩX |).
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It is clear from the properties of Yager’s definition of entropy enumerated above that it
has similar properties as our definition. The main difference is that Yager’s definition is not
decomposable as demonstrated in Example 8.

Example 8 (Yager’s definition of entropy). Suppose BPA m for X is as in Example 3,
and suppose conditional BPAs mY |x and mY |x̄ is as in Example 4. Then Hy(m) = 0.705,
Hy(mY |X) = 0.229, and Hy(mX,Y ) = 1.436. Thus, Hy(m) + Hy(mY |X) ≈ 0.705 + 0.229 =
0.934 6= 1.436. Yager does not have a definition of conditional entropy, so we have used
Yager’s definition of entropy for conditionals. It seems natural to weight the entropy of
conditionals by weights m(a↓X). If we do so, then H(mY |X) = 0.023 and in this case it is
still doesn’t satisfy the decomposition property.

7.3. Comparison with Smets’ definition

Smets [29] has a definition of entropy based on the commonality function as follow.

Definition 7 (Smets’ definition of entropy). Suppose Q is a CF for X corresponding to a
non-dogmatic BPA m for X. Then, Smets’ entropy of Q, denoted by Ht(Q) is defined as
follows

Ht(Q) = −
∑

a∈2ΩX

log (Q(a)) . (55)

As Q is assumed to be non-dogmatic, Q(a) > 0 for all a ∈ 2ΩX . If m is dogmatic, Ht(Q)
is defined as +∞. Our definition holds for all CFs. Also, our sum is an alternating sum
whose sign depends on the cardinality of subset a. If m1 and m2 are two non-conflicting
non-dogmatic BPAs for X, then Ht(m1 ⊕ m2) = Ht(m1) + Ht(m2). If ιX is the vacuous
BPA for X, then Ht(ιX) = 0. For consonant non-dogmatic BPAs, Ht(m) is not necessarily
0. There is no definition of conditional entropy. The main virtue of Smets’ definition is the
additivity property for the class of non-conflicting non-dogmatic CFs.

8. Summary & Conclusion

The most important property of our definition of entropy is the compound distributions
property. Such a property is not satisfied by any of the past definitions of entropy starting
from Höhle in 1982 [9] to Jiroušek-Shenoy in 2018 [11]. A review of most definitions of
entropy for BPAs can be found in [11]. We conjecture that our definition in this paper is the
only one that satisfies the compound distributions property.

An additivity property, which states that H(mX ⊕mY ) = H(mX) +H(mY ), where mX

and mY are distinct BPAs for X and Y , respectively, and which is satisfied by all past
definitions, is too weak to be of much significance. Even definitions that are inconsistent
with Dempster’s combination rule (e.g., [19], [8], and [12]) satisfy this property. As an
alternative, we have proposed a strong probability consistency property (Theorem 2), which
is satisfied by our definition.

We should also note that the compound distributions property only applies to belief
functions that are constructed from marginals and conditional belief functions. Given an
arbitrary joint belief function, it is not always possible to factor it into marginals and condi-
tionals that produce the given joint. Thus, our new definition is of particular interest for the
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class of joint belief functions that do factor into marginals and conditionals. In particular, it
applies to graphical belief functions that are constructed from directed acyclic graphs mod-
els, also known as Bayesian networks, but whose potentials are described by belief functions
[2].

One virtue of the compound distributions property is that we can compute the entropy of
the full joint belief function described by a graphical model (assuming that each conditional
only includes a small number of variables) even though it may be intractable to compute the
joint belief function.

We have several conjectures regarding properties of our definition that need to be resolved.
First, we conjecture that for X with n = |ΩX | ≥ 3, a BPA with the smallest entropy is one
that has focal elements of size 2 with values 1/

(
n
2

)
. Also, we conjecture that an equiprobable

Bayesian BPA has the highest entropy (= log(n)). Finally, we conjecture that Theorems
3 and 4 hold also for non-binary valued variables X and Y . In Section 7, we compare our
definition of entropy with those by Höhle [9], Yager [32], and Smets [29]. A more complete
comparison with all definitions of entropy of D-S belief function literature remains to be
done.
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